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ON THE SPACE OF MAPS BETWEEN R-LOCAL CW COMPLEXES 
by 

D.J. Anick1 and E. Dror Farjoun 

1. Summary of Results and Notations 

The papers [A1,A2] introduced and studied a differential graded 
Lie algebra (dgL) associated as a model to certain spaces. Building 
on that work, we construct in this note a simplicial skeleton for the 
space of pointed maps between two H-local simply-connected CW 
complexes (R ^ Q). The construction entails two steps. First is 
the construction, in the category of dgL'«, of a cosimplicial 
resolution and an associated "function complex" valid in a range of 
dimensions; and second is the connection with the topological mapping 
space via the above-mentioned models. 
1.1. A function complex for dgL's. Let R = Z[(p - l)!]""1 <= q for 
a prime p, and let L, M be free r-reduced dgL's over R having 
all generators in dimensions below rp (r > 1). We will construct a 
simplicial set, to be denoted hpjn(L,M), which serves in a range of 
dimensions as a function complex in the sense of Dwyer and Kan [DK], 
Our construction is explicit, in terms of generators and 
differentials; it is something which could be implemented on a 
computer. When L and M arise as models for finite spaces X and Y, 
this means that a simplicial model for the pointed mapping space Y 
is computable in a range of dimensions. 
1.2* The range of dimensions. When X and Y are R-local r-connected 
CW complexes (r > 1), whose dimensions m̂  and mv are bounded 
above by m and by rp respectively (m < rp), we may associate to 
them the dgL models Lx and Ly. Then Y has the d-type of 
hom(Lg,Ly), where 

d = min(rp - 1, r + 2p - 3) - m . 

"^Partially supported by a National Science Foundation grant. 
S.M.F. 
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Beyond dimension d, hom(Ly) is s t i l l defined, but its 
connection with the geometry becomes much hazier. 
1.3. Relation to tame homotopy. In view of [D] and [DK], one may 
associate to a pair of tame spaces (S,T) a function complex in the 
category of simplicial Lazard algebras. This function complex is 
homotopy equivalent (as a simplicial set) with the pointed mapping 
space T . When T is not tame, however, it is not obvious how one 
would obtain information about T through this technique. The desire 
to handle the non-tame case motivated this paper. Instead of 
requiring spaces to be tame, we require them to be R-local, and we 
restrict the dimensions where their cells may occur. 

(The referee has proposed that Dwyer's functor may be able to be 
specialized suitably to the category of r-connected simplicial sets 
generated in dimension < m. This specialization, call it S, might 
yield information about T when S belongs to CW . To accomplish 
this, one would attempt to use S in largely the same way that we 
have used L in this paper.) 
1.4. Notations. We work over a fixed subring R of the rationale, 
and we denote by p the least non-inverted prime, i . e . , 
p = inf {n«z+|n~1«R} . In general, then, Z[(p - l)!]""1 c R c q. 
As in tame homotopy, the relevant dimension ranges vary with a 
connectivity parameter r, where r > 1. Following [A1,A2] we 
introduce several categories. 
O SS denotes the category of simplicial sets. 
O TOP is the category of pointed topological spaces and pointed 

continuous maps. 
O CWn(R) denotes the full subcategory of TOP, consisting of r 

r-connected R-local CW complexes of dimension < n. "Dimension" 
means as an R-local cell complex, e.g., the local n-sphere 
belongs to 06CW°(R) even though it has topological dimension 
n + 1. 

O HoCWn(R) is the category obtained from CWn(R) by collapsing r r 
(pointed) homotopy classes of maps. 

D DGL(R) is the category of connected dgL's over R. A dgL is free 
if it is free as a Lie algebra (ignoring the differential); in 
this case we write it as (L(V),5), where the R-module of 
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generators V =̂ ¥jLv̂  is free and positively graded, and the 
differential 5 has degree -1. 

a DGL™(R) denotes the full subcategory of DGL(R) whose objects 
have the form (L(V),6) where V = .e V., i .e . , they are free 
with all generators occurring in dimensions r through m, 
inclusive. 

O L denotes the model, introduced in [Al], which carries 
CW™+1(R) to DGL™(R) when m < rp. 

1.5. Distinguished morphisms in DGLm(R). The category DGL™(R) 
cannot be made into a closed model category, but we will find it 
convenient to distinguish three classes of morphisms anyway. Call 
fetforDGL™(R) a weak equivalence if it induces an isomorphism on 
homology of universal enveloping algebras. It is a cofibration if it 
splits as an inclusion of free Lie algebras (ignoring the 
differential), and it is a fibrat ion if it is surjective in 
dimensions above r. Trivial fibrations are simultaneously 
fibrations and weak equivalences. 
2- Function Complexes in DQ1*(R) 

We will now investigate the possibility of doing homotopy theory 
in DGL̂ (R). The dimension limitation, viz., the "m" in DGL™(R), 
spoils our hope of doing so in the sense of Quillen [QJ or even Baues 
[B]. We cannot dispense entirely with the bound m, because dgL's 
exhibit a variety of undesirable behaviors when generator dimensions 
are permitted to exceed rp. On the other hand, the canonical 
constructions of turning a map into a fibration or cofibration tend 
to increase the dimensions of generators, and thus they eventually 
bump us out of any fixed DGL™(R). 

An alternate approach is suggested in [T] and [Al]. We may 
define for m < rp a homotopy relation on morphisms by utilizing a 
certain cylinder construction, which raises by one the maximum 
generator dimension. The gap between m and rp then offers us a 
"breathing space" in which we can perform the standard constructions 
approximately (rp - m) times, and thus higher homotopy information 
is obtainable up to dimension (approximately) rp - m. This cylinder 
construction, known as the Tanre cylinder, is recalled next. 
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2.1. The Tanré cylinder. This is developed in [T] and [Al] so we 
provide here only a brief overview. Given a dgL L = (L(V),6) in 
DGL™(R), where m < rp, Tanré associates to it another dgL in 
DGL*+1(R)f denoted IL = (IL(V),IG). Taking the set of weak 
equivalences to be as in 1.5, the dgL IL is a valid cylinder object 
on L in the sense of [Q] or [B]. In particular, I comes with 

natural weak equivalences jn>Ji: id -+ u l an<* if ^ ír3 M are two 
morphisms in DGL°(R), then f and g are nomotopic if and only if 
fug factors through IL. Collapsing homotopy classes gives us a 
category which we denote by ffoDGL™(R). 

We remark that I is not a functor, although If: IL IM 
exists non-canonically for each f: L -» M in iforDGL̂ (R). However, 
I does satisfy the weak naturality condition If©jp(L) = JQ(M)of, 
IfoJ1(L) = Jx(M)of. 
2.2. Constructing the cosimplicial resolution. We construct next an 
initial segment of a cosimplicial resolution for objects in DGL™(R). 
We shall use it to define a function complex between two such dgL's. 
We follow as closely as possible the standard procedure, due to Dwyer 
and Kan [DK], for constructing cosimplicial resolutions in any closed 
model category. By a cosimplicial resolution for an object A we 
mean a (not necessarily functorial) diagram 

(1) A ^ A1k ^ A2A . . . ¿nA . . . 
satisfying the usual cosimplicial identities. In (1)» each arrow is 
a weak equivalence; the coface maps are cofibrations, while the 
codegeneracies are fibrations. (See [DK, Section 4.3] for a precise 
definition.) 

Let us review the Dwyer-Kan construction for a closed model 
category C. Given an object A, a cylinder on A is an object IA 
which provides the first stage of a cosimplicial resolution for A. 
That is, IA fits into a diagram 

(2) A Z=5 AuA S-> IA SL, A 
such that c is a cofibration, q is a trivial fibration, and both 
composites are the identity on A. This I( ) need not be a 
functor, but we do assume the compatibility of jQ = ci^ and 
j^ = ci^ with any If. Typically I arises by factoring the 
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