
Astérisque

MARTIN MARKL
The rigidity of Poincaré duality algebras and classification
of homotopy types of manifolds

Astérisque, tome 191 (1990), p. 221-237
<http://www.numdam.org/item?id=AST_1990__191__221_0>

© Société mathématique de France, 1990, tous droits réservés.

L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique l’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AST_1990__191__221_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


THE RIGIDITY OF POINCARÉ DUALITY ALGEBRAS AND 
CLASSIFICATION OF HOMOTOPY TYPES OF MANIFOLDS 

MARTIN MARKL 

INTRODUCTION 

This paper is devoted to the study of homotopy types of simply connected rational 
Poincaré duality spaces. We will frequently use the language and results of rational 
homotopy theory, a good common reference is the book [14]. 

So, let X be a rational Poincaré duality space of the (top) dimension n, i.e. a simply 
connected space, whose rational cohomology algebra is a Poincaré duality algebra of 
the formal dimension n; see §3. It is well-known (see also §3) that X has the rational 
homotopy type of a space of the form Y Uh eni where Y is a simply connected CW-
complex of dimension < n and h : Sn~l = den —• Y is a continuous map. The space V, 
defined uniquely up to rational homotopy type, will be called (with some inaccuracy) 
the skeleton of X and will be denoted by X<n. If X is a simply connected n-dimensional 
manifold, the construction above can be described even more geometrically: take X \ 
2?", where B" is a (sufficiently small) n-dimensional open disc. It is easy to remark that 
the n-dimensional manifold with boundary, X \ 2?n, has the same rational homotopy 
type as the skeleton X<n} constructed above. 

Recall that two simply connected spaces X and Y are said to have the same k-
homotopy type, where k is a field of characteristic zero, if their Quillen minimal models 
[14; m.3.(l)] are isomorphic over k; this fact will be denoted by X ~k Y. Of course, 
for k = Q we get the usual definition of the rational homotopy equivalence. 

Fix an n-dimensional rational Poincaré duality space X (simply connected by def
inition). The aim of this paper is to give a description of the set PDS^(X) of all 
k-homotopy types of rational Poincaré duality spaces Y whose skeleta Y<n have the 
same rational homotopy type as the skeleton X<n of X, when X is formal. It is inter
esting to point out that the set PDS±{X) is, according to rational surgery results [3], 
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for n ^ 0 (mod 4) naturally isomorphic to the set Man^X) of all k-homotopy types 
of n-dimensional compact simply connected manifolds M with M<n ~ Q X<n, 

The first attempt towards the description of PDSk(X) was made in [12], where 
it is stated [12; Theorem 1] that the rational homotopy type of a rational Poincaré 
duality space is uniquely determined by the rational homotopy type of its skeleton, if 
the cohomology algebra of X is fixed. Here we will always suppose that X is formal, 
the hypothesis taken by M. Aubry [1,2]. 

We give here a complete description of the set PDS^(X) in terms of usual algebraic 
objects - Galois cohomology and induced maps - when X is formal. Using this descrip
tion, we are able to prove, for example, that the k-homotopy type of a rational Poincaré 
duality space is uniquely determined by its skeleton provided that k is algebraically 
closed. We prove also that the set PDSk(X) (and hence also Man±(X)) is finite for 
fields satisfying [£ : k] < oo (for example for k = R, the case of real homotopy types). 
As an example of explicit calculations we construct a large class of Poincaré duality 
spaces X for which the set PDS^{X) consists of the k-homotopy type of X only, k 
arbitrary. On the other hand, we give an example of a manifold M, for which the set 
PDSQ{M) is infinite. 

The algebraic counterpart of the description of PDS^(X) is the following classifi
cation problem: let H* be a Poincaré duality algebra of formal dimension n, how to 
describe the set PDA^(H*) of all isomorphism classes of Poincaré duality algebras H'* 

with H'*/H'n H*/Hn. Our approach to the study of the set PDAh(H*) is based on 
a rigidity property of Poincaré duality algebras over an algebraically closed field and 
on the usual method of descent. We hope that this approach can be used even in more 
general situation - for the classification of all Gorenstein rings R having the "skeleton9 
R/Socle{R) fixed (see [15]). 

Our paper is organized as follows. In the first paragraph we prove a rigidity theorem 
for Poincaré duality algebras. The proof of this statement is based on a deliberate use 
of the deformation theory; note that this machinery has already been systematically 
used in rational homotopy theory in [4]. As a by-product we obtain a characterization 
of Poincaré duality in terms of Harrison cohomology. These results are in the next 
paragraph applied to the solution of our classification problem for Poincaré duality 
algebras. The main result of this section is Theorem 2.7. In the third paragraph the 
algebraic theory is applied to the study of the set PDS±(X) as introduced above, a 
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description is given in Theorem 3.2. Notice that both Theorem 3.2 and the forthcom
ing examples explicitely describe the effect of the ground field k on the structure of 
PDSk(X), hence all the material of this paragraph can be considered as a contribution 
to the study of descent and non-descent phenomena in rational homotopy theory in 
the spirit of [10]. 

I would like to express here my thanks to §tefan Papadima for drawing my attention 
to the possible use of descent methods. Also the formulation of the condition iii) of 
Theorem 1.5 is due to him. I wish also to acknowledge my indebtedness to the referee 
for useful comments and references. 

l. RIGIDITY OF POINCARÉ DUALITY ALGEBRAS 

As usually, by a Poincaré duality algebra (over a field k) of the formal dimension 
n is meant a (finite dimensional) graded commutative k-algebra H* = 0,>o H* such 
that Hn is isomorphic to A;, Hx = 0 for i > n and the bilinear form B : H* 0 H* —• k 
of degree —n defined by 

B(x,y) = 
z.y G к ~ Ял for deör(x) + c%(y) = n 
0 otherwise 

is nondegenerate in the usual sense. All Poincaré duality algebras (and Poincaré duality 
spaces) in this paper are supposed to have the same formal dimension equal to a given 
natural number n. 

1.1. For a graded commutative algebra A* denote: 

B(A') = 
all bilinear forms B : A* 0 A* —> k of degree —n such 

that B{x,y) = (-l)^(x)^(»)J9(y,x) for x>yGA* 
M{A*) = {BG B{A*);B{xy,z) = B{xyyz) for x,y,z € A*}, 
P(A*) = {BeM{A*);B is nondegenerate on A>0$A>0 J and 
G(A*) = Aut(A*) = the group of graded automorphisms of A*. 

Notice that all the sets above have the natural structure of a (not necessarily irre
ducible) algebraic variety. The geometry of M(A*) is extremely simple—as all the 
defining equations are linear, it is isomorphic to an affine space. The set P(A*) is 

223 



MARKL 

plainly Zariski-open and dense in M{A*). The group G(A*) acts naturaly from the left 
on 8(A*) by 

+{B)(s,y) = B(4-l(z),+-l(9))-

Clearly G{A*)M(A*) C M{A*) and G{A*)P(A*) C P{A*). The action of G(A*) is 
plainly continuous in the Zariski topology. 

We call an algebra A* a fragment, if it is of the form 

A* = H<n := H*/Hn 

for a Poincaré duality algebra H*. The algebra H<n will be called the skeleton of H*. 
Here J5T<n is defined as a quotient, but after having chosen a section, we may as well 
consider it as a subset of H*. 

It is interesting to remark that it is allways possible to decide in finitely many steps 
whether a given graded commutative algebra A* is a fragment or not. To this end, 
find at first a basis of the affine space M(A*). Our algebra A* is then a fragment if 
and only if the polynomial function, representing the determinant, is not equal to zero 
on M(A*) identically. 

This characterization problem for fragments is the special case of the problem of 
deciding when a given local ring is a factor of a Gorenstein ring by the socle, see [15]. 

1.2« For a fragment A* consider the set M(A*) of all graded commutative algebras H* 
with H* = 0 for i > n, Hn ~ k and H^n isomorphic to A*. For H* € M{A*) choose 
an isomorphism r : Hn —• k and define B € M(A*) by B(x,y) = r(x.y) € k. The 
form B is defined canonically up to a nonzero multiple from k. Keeping in mind this 
ambiguity, we can write H* = (A*, B). Notice that H* is a Poincaré duality algebra if 
and only if B€P(A*). 

1.3. Let A* = H<n be a fragment and denote by PDA± (H* ) the set of all isomorphism 
classes of Poincaré duality k-algebras having the skeleton isomorphic to A*. We claim 
that the presentation 1.2 induces a bijection between PDA±(H*) and the orbit space 
P(A*)/G(A*) provided that k algebraically closed. 

To verify this, notice at first that each algebra from PDA^(H*) is isomorphic to an 
algebra H'* with Hf*<n = A*. Hence we can suppose immediately that H'*<n = A* for 
each H'* € PDA*(H*). Let J5P* = (A*> B') and H»* = (A*, B") be two algebras from 

224 


