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MAPS BETWEEN p-COMPLETIONS OF 
THE CLARK-EWING SPACES X(W,p,n) 

by 

Zdzisiaw Wojtkowiak 

Abstract. Let Zp denote the ring of p—adic integers. Let W C GL(n,Zp) be a 
finite group such that p does not divide the order of W. The group W acts on 

K((Zp)n,2). Let X(W,p,n)p be the p—completion of the space 

K((Zp)n,2) x EW. We classified homotopy classes of maps between spaces 

X(W,p,n)p. 

0. INTRODUCTION 

Let Zp denote the ring of p—adic integers. Let Yp denote the p—completion of 
a space Y. 

Let T be a torus and let W C GL^CTJSZ ) be a fintie group. The group W 
acts on the space (BT)p. Let 

X(W,p,T) := ((BT)p x w EW)p 

where EW is a contractible space equipped with a free action of W. 

The aim of this paper is to apply the program from [1] to study maps between 
spaces X(W,p,T). The starting point was an attempt to generalize one result of 
Hubbuck (see [8] Theorem 1.1.). The plan of work will follow closely that of [3] 
and [13]. 

Example. Let G be a connected, compact Lie group, T its 
maximal torus and W its Weyl group. If p does not divide the 
order of W then (BG)p « (BT xw EW)p. 

This example suggests the following defintion. 
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Definition. Let us set X = X(W,p,T). We shall call T a maximal 
torus of X and W a Weyl group of X. 

The projection (BT)p x EW—> (BT)p ><w EW induces a map 
i : BT —> X. We shal I call i : BT —• X a structure map of X. 

We point out that in [5] A. Clark and J. Ewing studied cohomology algebras of 
spaces (BT)p x^EW. We warn the reader that our notation is different from 
the notation used in [5]. The space X(W,p,T) is the p—completion of the Clark-
—Ewing space X(W,p,rank T). 

Through the whole paper we shall assume that p is an odd prime. We need this 
assumption to show Proposition 1.1. It is clear that this assumption is not essen
tial, however we were not able to overcome technical difficulties for p = 2. 

Now we shall state our main results. 

Let us set X = X(W,p,T) and X7 = X(W7,p,T7). 

THEOREM 1. Assume that p does not divide the orders of W and 
W7. Then for any map f :X—»X' there is a map T : (BT)p—*(BT7)p 
such that the diagram 

X f X7 

i i 

(BT)P 
E3 (BT')p 

commutes up to homotopy. Moreover we have: 

a) if T7 : (BT)p—>(BT7)p is such that f o i is homotopic to 
i7 o TL' then there is w 6 W7 such that w o Y ' is homotopic to 7, 
b) for any w € W there is w7 6 W7 such that Haw is homotopic 
to w7 o 7. 

The group W acts on ^(T) ® Zp, hence W acts on ^(T) ® R for any 
Zp—module R. 
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DEFINITION 1. Let R be a Z —algebra. We say that a homomor-
ph ism of R—modu les 

<f>: T . m e R - 4 r , ( T ' ) » R 

is admissible if for any w G W there is w' 6 W; such that 
^ o w = w' o <p. 
We say that two admissible maps <p and ^ from TT^T) ® R to 
T1(T/)®R are equivalent if there is w G W' such that 
w O (p = 

It is clear that the relation defined above is an equivalence relation on the set of 
admissible maps from x-̂ T) ® R to T1(T/)®R. We shall denote by 
Ahom (̂T,T/ ) the set of equivalence classes of admissible maps from x̂ (T) ® R 
to ^ ( T ^ ^ R . 

Let us notice that the map induced by 7 from Theorem 1 on fundamen
ts groups is admissible for R = Zp. This map is unique up to the action of W', 
so any map f : X —• X' determines uniquely an equivalence class of *"̂ (7) in 
Ahomz (T,T') which we shall denote by #(f). 

P 
THEOREM 2. Let us assume that p does not divide the orders of 
W and W'. Then the natural map 

X: [X,X']—*Ahomz (T,T') 
P 

is bij ective. 

For any space Y we set 

H*(Y,Qp) := H*(Y,Zp) ® « , 

where 4}p is a field of p—adic numbers. 

THEOREM Z. Let us assume that p does not divide the orders of 
W and W'. Then the natural map 
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* : [X,X'] —. Hom(H*(X',Qp), H*(X,Qp)) 

¿5 infective. 

We denote by K°( ,R) the O**1—term Qf complex K—theory with R—coefficients. 

Let Qr be the set of operations in K°( ,R). The functor K°( ,R) is equipped 

with the natural augmentation K°( ,R) —• R. Let Hom^ (K°(X/ ,R),K°(X,R)) 

be the set of R—algebra homomorphisms which commute with the action of ¿7̂  
and augmentations. 

THEOREM4. If p does not divides the order of W and W' , then 
the natural map 

i> : [X,X'] Hom^ (K°(X' ,Zp),K°(X,Zp)) 
P 

¿5 bijective. 

We can formulate our results in a nice categorical way. 

We shall define a category Zp — Rep in the following way. Objects of the cate
gory Zp—Rep are representations p : W —• GL(M) where M is a free, finitely 
generated Zp—module, W is a finite group and p does not divide the order of 
W. It remains to define morphisms in this category. If 0 : W —> GL(M) and 
0/ : W' —>GL(M') are two objects of Zp — Rep, we say that a homo-
morphism of Zp—modules f : M —* M ' is admissible if for each w € W there is 
w' G W such that f o w = w/ of. We say that two admissible homo
morphisms f and g from M to M ' are equivalent if there is w G W ' such 
that f = w/ o g. We shall denote by Ahom(0,0') the set of equivalence classes 
of admissible homomorphisms from M to M'. The set Ahom(#,#7) is the set 
of morphisms from 0 to 0' in the category Zp— Rep. The category Zp — Rep 
is equipped with the product defined in the following way: 

(0:\y—• GL(M)) © (0':W'—4GL(M')) = 0®0' : W x W7 —>GL(M©M'). 

The product of morphisms is defined in the obvious way. 

We denote by Ht(p) the category whose objects are spaces X(W,p,T) such 
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