Astérisque

ZDZISLAW WOJTKOWIAK Maps between *p*-completions of the Clark-Ewing spaces X(W, p, n)

Astérisque, tome 191 (1990), p. 269-284 http://www.numdam.org/item?id=AST_1990_191_269_0>

© Société mathématique de France, 1990, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

MAPS BETWEEN p-COMPLETIONS OF THE CLARK-EWING SPACES X(W,p,n)

by

Zdzisław Wojtkowiak

Abstract. Let Z_p denote the ring of p-adic integers. Let $W \subset GL(n,Z_p)$ be a finite group such that p does not divide the order of W. The group W acts on $K((Z_p)^n,2)$. Let $X(W,p,n)_p$ be the p-completion of the space $K((Z_p)^n,2) \times EW$. We classified homotopy classes of maps between spaces $X(W,p,n)_p$.

0. INTRODUCTION

Let Z_p denote the ring of p-adic integers. Let Y_p denote the p-completion of a space Y.

Let T be a torus and let W C GL($\pi_1(T) \otimes \mathbb{Z}_p$) be a fintie group. The group W acts on the space (BT)_p. Let

$$X(W,p,T) := ((BT)_p \times_W EW)_p$$

where EW is a contractible space equipped with a free action of W.

The aim of this paper is to apply the program from [1] to study maps between spaces X(W,p,T). The starting point was an attempt to generalize one result of Hubbuck (see [8] Theorem 1.1.). The plan of work will follow closely that of [3] and [13].

Example. Let G be a connected, compact Lie group, T its maximal torus and W its Weyl group. If p does not divide the order of W then $(BG)_p \approx (BT \times_W EW)_p$.

This example suggests the following defintion.

S.M.F. Astérisque 191 (1990)

WOJTKOWIAK

Definition. Let us set X = X(W,p,T). We shall call T a maximal torus of X and W a Weyl group of X.

The projection $(BT)_p \times EW \longrightarrow (BT)_p \times_W EW$ induces a map $i: BT \longrightarrow X$. We shall call $i: BT \longrightarrow X$ a structure map of X.

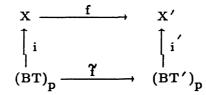
We point out that in [5] A. Clark and J. Ewing studied cohomology algebras of spaces $(BT)_p \times_W EW$. We warn the reader that our notation is different from the notation used in [5]. The space X(W,p,T) is the p-completion of the Clark-Ewing space X(W,p,rank T).

Through the whole paper we shall assume that p is an odd prime. We need this assumption to show Proposition 1.1. It is clear that this assumption is not essential, however we were not able to overcome technical difficulties for p = 2.

Now we shall state our main results.

Let us set X = X(W,p,T) and X' = X(W',p,T').

THEOREM 1. Assume that p does not divide the orders of W and W'. Then for any map $f: X \longrightarrow X'$ there is a map $\widetilde{f}: (BT)_p \longrightarrow (BT')_p$ such that the diagram



commutes up to homotopy. Moreover we have:

a) if $\tilde{f}': (BT)_p \longrightarrow (BT')_p$ is such that $f \circ i$ is homotopic to i' $\circ \tilde{f}'$ then there is $w \in W'$ such that $w \circ \tilde{f}'$ is homotopic to \tilde{f} , b) for any $w \in W$ there is $w' \in W'$ such that $\tilde{f} \circ w$ is homotopic to $w' \circ \tilde{f}$.

The group W acts on $\pi_1(T) \otimes Z_p$, hence W acts on $\pi_1(T) \otimes R$ for any Z_p -module R.

DEFINITION 1. Let R be a Z_p -algebra. We say that a homomorphism of R-modules

$$\varphi: \pi_1(\mathbf{T}) \otimes \mathbf{R} \longrightarrow \pi_1(\mathbf{T}') \otimes \mathbf{R}$$

is admissible if for any $w \in W$ there is $w' \in W'$ such that $\varphi \circ w = w' \circ \varphi$. We say that two admissible maps φ and ψ from $\pi_1(T) \otimes R$ to $\pi_1(T') \otimes R$ are equivalent if there is $w \in W'$ such that $w \circ \varphi = \psi$.

It is clear that the relation defined above is an equivalence relation on the set of admissible maps from $\pi_1(T) \otimes R$ to $\pi_1(T') \otimes R$. We shall denote by Ahom_R(T,T') the set of equivalence classes of admissible maps from $\pi_1(T) \otimes R$ to $\pi_1(T') \otimes R$.

Let us notice that the map $\pi_1(f)$ induced by f from Theorem 1 on fundamentul groups is admissible for $R = Z_p$. This map is unique up to the action of W', so any map $f: X \longrightarrow X'$ determines uniquely an equivalence class of $\pi_1(f)$ in Ahom_{Z_p}(T,T') which we shall denote by $\chi(f)$.

THEOREM 2. Let us assume that p does not divide the orders of W and W'. Then the natural map

$$\chi: [X,X'] \longrightarrow Ahom_{Z_p}(T,T')$$

is bijective.

For any space Y we set

$$\operatorname{H}^{*}(\operatorname{Y}, \mathbb{Q}_{p}) := \operatorname{H}^{*}(\operatorname{Y}, \mathbb{Z}_{p}) \otimes \mathbb{Q} ,$$

where $\mathbf{Q}_{\mathbf{p}}$ is a field of p-adic numbers.

THEOREM 3. Let us assume that p does not divide the orders of W and W'. Then the natural map

$$\phi: [\mathbf{X}, \mathbf{X}'] \longrightarrow \operatorname{Hom}(\operatorname{H}^{*}(\mathbf{X}', \boldsymbol{Q}_{p}), \operatorname{H}^{*}(\mathbf{X}, \boldsymbol{Q}_{p}))$$

is injective.

We denote by $K^{0}(,R)$ the 0^{th} -term of complex K-theory with R-coefficients. Let \mathcal{O}_{R} be the set of operations in $K^{0}(,R)$. The functor $K^{0}(,R)$ is equipped with the natural augmentation $K^{0}(,R) \longrightarrow R$. Let $\operatorname{Hom}_{\mathcal{O}_{R}}(K^{0}(X',R),K^{0}(X,R))$ be the set of R-algebra homomorphisms which commute with the action of \mathcal{O}_{R} and augmentations.

THEOREM 4. If p does not divides the order of W and W', then the natural map

$$\psi : [X, X'] \longrightarrow \operatorname{Hom}_{\mathscr{O}_{Z_{p}}}(K^{0}(X', Z_{p}), K^{0}(X, Z_{p}))$$

is bijective.

We can formulate our results in a nice categorical way.

We shall define a category $Z_p - \text{Rep}$ in the following way. Objects of the category Z_p -Rep are representations $\rho: W \longrightarrow \text{GL}(M)$ where M is a free, finitely generated Z_p -module, W is a finite group and p does not divide the order of W. It remains to define morphisms in this category. If $\theta: W \longrightarrow \text{GL}(M)$ and $\theta': W' \longrightarrow \text{GL}(M')$ are two objects of $Z_p - \text{Rep}$, we say that a homomorphism of Z_p -modules $f: M \longrightarrow M'$ is admissible if for each $w \in W$ there is $w' \in W'$ such that $f \circ w = w' \circ f$. We say that two admissible homomorphisms f and g from M to M' are equivalent if there is $w \in W'$ such that $f = w' \circ g$. We shall denote by $\text{Ahom}(\theta, \theta')$ the set of equivalence classes of admissible homomorphisms from θ to θ' in the category Z_p -Rep. The category Z_p -Rep is equipped with the product defined in the following way:

$$(\theta: W \longrightarrow \operatorname{GL}(M)) \oplus (\theta': W' \longrightarrow \operatorname{GL}(M')) = \theta \oplus \theta': W \times W' \longrightarrow \operatorname{GL}(M \oplus M').$$

The product of morphisms is defined in the obvious way.

We denote by Ht(p) the category whose objects are spaces X(W,p,T) such