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DERIVED FUNCTORS OF THE DESTABILIZATION 
and 

THE ADAMS SPECTRAL SEQUENCE 

by Said ZARATI 

Introduction 

Let A be the modulo 2 Steenrod algebra, dVt the category of 
graded A-modules and A-linear maps of degree zero, and *U the 
full sub-category of dVt whose objects are unstable A-modules. We 
denote by D : dVt —> *U the destabilization functor and by Ds, s > 0, 
its derived functors. We have a natural transformation : Ds —> Z 
DSZ"1, s > 0, induced by the adjoint of the identity QD = D Z"1 

where LM, ©fVt —> dVt , m e 2, is the mth suspension functor and £2 
is the left adjoint of I : 11 —-> *U . 

In this note we prove the following theorem wich will be more 
precise in section 2.3. 

Theorem 1.1. Let M be a nil-closed unstable A-module. Then the 
natural map £2DSX"S M —> DSZ~S~1M is an isomorphism for every 
s>0. 

Using the higher Hopf invariants introduced in [7] we prove the 
following property of the Adams spectral sequence, in the modulo 
2 cohomology, for the group {X,Y} of homotopy classes of stable 
maps from X to Y, in certain cases. 

Theorem 1.2. : Let X and Y two pointed CW-complexes such that 
(i) H*(X,IF2) - Z2I where XI is an injective unstable A-module. 
(ii) H*(Y;IF2) is gradually finite and nil-closed. 
Then, the Adams spectral sequence for the group {X,Y} degenerate 
at the E2-term : E2S,S « Ers»s for every r > 2 and s > 0. 
S.M.F. 
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ZARATI 

The infinite real projective space IR P°° is an example of a space Y 
satisfying the hypotheses of theorem 1.2. 

The organization of the rest of this note is as follows. In section 2 
we give a characterization of nil-closed A-modules which allows us 
to prove the theorem 1.1 (see theorem 2.3.3). Section 3 gives the 
proof of theorem 1.2 and an application. We finish this note by a 
remark concerning the case p > 2. 

All cohomology is taken with IF2 coefficients. We write H*( ) for 
H*( ; IF2) and we denote by H*( ) the reduced modulo 2 cohomology. 

2. Derived functors of the destabilization 

2.1. Let A be the modulo 2 Steenrod algebra. We denote by dVt the 
category whose objects are graded A-modules (M = {Mn, n e 
Z}) and whose morphisms are A-linear maps of degree zero. We 
denote by Ti the full sub-category of dVt whose objects are 
unstable A-modules (an A-module M is called unstable if Sqfx = 0 
for every x in Mn and every i > n ; in particular Mn = 0 if n < 0). 

The forgetful functor Ti —> <sfVt has a left adjoint functor D 
: <gfVt —> *U, called the destabilization functor, which satisfies : 
Hom<gfVt (M>N) = Hom^(DM,N) for every A-module M and every 
unstable A-module N. The functor D : dVt —> 11 is right exact, we 
denote Ds : dVt —> *U, s > 0, its derived functors. One of the 
motivations for the study of the derived functors of the 
destabilization is the following isomorphism : 
(2.1) Ext^tM,!) = Hom< (̂DsM,l) 
for every A-module M and every unstable injective A-module I. 

Let Zm : <s(Vt —> <sfVt , m G Z , the m"1 suspension functor 
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DERIVED FUNCTORS OF DESTABILIZA TION 
which associates to a module M = {Mn, n e 2} the module 
Xm M = {Mn"m, n Z}. The A-module structure on ZmMis given by 
Sq'(Zmx) = ZmSq'x, x in M. The computation of DgZ^M, where M is 
an unstable A-module, is done by Lannes and Zarati [5] for t < s. 
In this paragraph we will compute DSX"(S + 1̂ M for a particular 
unstable A-modules called nil-closed. First let us recall the 
definition and some properties of nil-closed unstable A-modules. 

2.2. Nil-closed unstable A-modules [1], [6] 

Definition 2.2.1 An unstable A-module M is called reduced if the 
cup-square Sqn : Mn —> M2n, x —> Sqnx, is injective for every n 
>0. 

Remark 2.2.2 We can verify easily that an unstable A-module is 
reduced if and only if it does not contain a non trivial nilpotent 
sub-A-module. An unstable A-module N is called nilpotent if for 

every x in Mn, there exist r > 0 such that Sq2 n Sqnx = 0. 

Definition 2.2.3. An unstable A-module M is called nil-closed if 
(i) M is reduced 
(ii) An element x in M of even degree is in the image of the 
cup-square if and only if QjX = 0, for all i > 0, where Qj is the ith 
Milnor primitive in A. 

Example 2.2.4 Let BZ/2 denote a classifying space of the group 
Z/2. The unstable A-module H*(BZ/2) is nil-closed indeed, as a 
graded IF2-algebra H*(BZ/2) is freely generated by one generator 
of degree one. 

2.3.Computation of DSX~(S+1)M, M nil-closed and s > 0. 

2.3.1 To state our result we use the functor Rs : *U —> *Uf s > 0, 
introduction in [5] page 29 (see also [9]) whose main properties 
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are: 
(i) The module RSM is a sub-A-module of H*(B(Z/2)S) <g> M. In 
particular RSM is an unstable A-module. 
(ii) Let H*(BZ/2) = IF2[u] where u is of degree one. We denote by Ls 
= H*(B(Z/2)s)GLs(z/2) the Dickson algebra, that is the sub-algebra 
of H*(B(Z/2)S) of invariants under the natural action of the general 
linear group GLs(Z/2) = GL((Z/2)S). The module RSM is the 
Ls-module generated by the elements Sts(x), x in M. These 
elements Sts(x) are defined inductively by : 

St0(x) = x , x <= M. 
n 

St1(x) = 2̂  u % Sqx , xe M . 
i=0 

Sts(x) = St-| (Stg.-i (x)) , s > 1, x e M 
iii) Let E+G2S be the disjoint union of a base point and a 
contractible space on which the symmetric group <S2S acts freely. 
For any pointed space X, we denote by GT2SX the quotient of the 
space E+(52s A (X A .... A X), X is smashed with itself 2s times, by 
the diagonal action of <S2S (<S2S acts on X A A X by permutation of 
the factors). Let As : B+(Z/2)S A X > G2S X be a "Steenrod 
diagonal" determined by a bijection between (Z/2)sand {1,2,....,2s}. 
The unstable A-module RSH*X is the image of A5* in the modulo 2 
cohomology. 

2.3 .2 Let n : *U -> % be the left adjoint functor of X : *U —> (UI 
that is : 

Hom^(M,ZN) = Hom |̂(QM,N) 
for every unstable A-modules M and N. 
We are now ready to state the main result of this paragraph which 
will be proved in 2.6 
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