Astérisque

SAID ZARATI Derived functors of the destabilization and the Adams spectral sequence

Astérisque, tome 191 (1990), p. 285-298 http://www.numdam.org/item?id=AST 1990 191 285 0>

© Société mathématique de France, 1990, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

DERIVED FUNCTORS OF THE DESTABILIZATION and THE ADAMS SPECTRAL SEQUENCE

by Said ZARATI

Introduction

Let A be the modulo 2 Steenrod algebra, \mathcal{A} the category of graded A-modules and A-linear maps of degree zero, and \mathcal{U} the full sub-category of \mathcal{A} whose objects are unstable A-modules. We denote by D : \mathcal{A} ---> \mathcal{U} the destabilization functor and by D_S, s \geq 0, its derived functors. We have a natural transformation : D_S ---> Σ D_S Σ^{-1} , s \geq 0, induced by the adjoint of the identity $\Omega D = D \Sigma^{-1}$ where Σ^{m} , \mathcal{A} ---> \mathcal{A} , m $\in \mathbb{Z}$, is the mth suspension functor and Ω is the left adjoint of Σ : \mathcal{U} ----> \mathcal{U} .

In this note we prove the following theorem wich will be more precise in section 2.3.

Theorem 1.1. Let M be a nil-closed unstable A-module. Then the natural map $\Omega D_S \Sigma^{-S} M \longrightarrow D_S \Sigma^{-S-1} M$ is an isomorphism for every $s \ge 0$.

Using the higher Hopf invariants introduced in [7] we prove the following property of the Adams spectral sequence, in the modulo 2 cohomology, for the group $\{X,Y\}$ of homotopy classes of stable maps from X to Y, in certain cases.

Theorem 1.2. : Let X and Y two pointed CW-complexes such that (i) $\overline{H}^*(X,IF_2) \simeq \Sigma^2 I$ where ΣI is an injective unstable A-module. (ii) $\overline{H}^*(Y;IF_2)$ is gradually finite and nil-closed. Then, the Adams spectral sequence for the group {X,Y} degenerate

at the E₂-term : $E_2^{S,S} \approx E_r^{S,S}$ for every $r \ge 2$ and $s \ge 0$. S.M.F. Astérisque 191 (1990) The infinite real projective space IR P^{∞} is an example of a space Y satisfying the hypotheses of theorem 1.2.

The organization of the rest of this note is as follows. In section 2 we give a characterization of nil-closed A-modules which allows us to prove the theorem 1.1 (see theorem 2.3.3). Section 3 gives the proof of theorem 1.2 and an application. We finish this note by a remark concerning the case p > 2.

All cohomology is taken with IF_2 coefficients. We write $H^*()$ for $H^*(; IF_2)$ and we denote by $\overline{H}^*()$ the reduced modulo 2 cohomology.

2. Derived functors of the destabilization

2.1. Let A be the modulo 2 Steenrod algebra. We denote by \mathfrak{M} the category whose objects are graded A-modules ($M = \{M^n, n \in \mathbb{Z}\}$) and whose morphisms are A-linear maps of degree zero. We denote by \mathfrak{N} the full sub-category of \mathfrak{M} whose objects are unstable A-modules (an A-module M is called unstable if Sqⁱx = 0 for every x in M^n and every i > n ; in particular $M^n = 0$ if n < 0).

The forgetful functor $\mathcal{U} \dashrightarrow \mathcal{M}$ has a left adjoint functor D : $\mathcal{M} \dashrightarrow \mathcal{U}$, called the destabilization functor, which satisfies : Hom \mathcal{M} (M,N) = Hom \mathcal{U} (DM,N) for every A-module M and every unstable A-module N. The functor D : $\mathcal{M} \dashrightarrow \mathcal{U}$ is right exact, we denote $D_s : \mathcal{M} \dashrightarrow \mathcal{U}$, $s \ge 0$, its derived functors. One of the motivations for the study of the derived functors of the destabilization is the following isomorphism :

(2.1)
$$\operatorname{Ext}^{S} \mathfrak{O} \mathfrak{H}(M,I) \simeq \operatorname{Hom} \mathfrak{N}(D_{S}M,I)$$

for every A-module M and every unstable injective A-module I.

Let $\Sigma^m:$ ${}^{\mbox{\scriptsize off}}$ ---> ${}^{\mbox{\scriptsize off}}$, m $\in {\mathbb Z}$, the m^th suspension functor

which associates to a module $M = \{M^n, n \in \mathbb{Z}\}$ the module

 $\Sigma^m M = \{M^{n-m}, n \in \mathbb{Z}\}\)$. The A-module structure on $\Sigma^m M$ is given by $Sq^i(\Sigma^m x) = \Sigma^m Sq^i x$, x in M. The computation of $D_s \Sigma^{-t} M$, where M is an unstable A-module, is done by Lannes and Zarati [5] for $t \le s$. In this paragraph we will compute $D_s \Sigma^{-(s+1)} M$ for a particular unstable A-modules called nil-closed. First let us recall the definition and some properties of nil-closed unstable A-modules.

2.2. Nil-closed unstable A-modules [1], [6]

Definition 2.2.1 An unstable A-module M is called reduced if the cup-square $Sq^n : M^n \dashrightarrow M^{2n}$, $x \dashrightarrow Sq^n x$, is injective for every $n \ge 0$.

Remark 2.2.2 We can verify easily that an unstable A-module is reduced if and only if it does not contain a non trivial nilpotent sub-A-module. An unstable A-module N is called nilpotent if for

every x in M^n , there exist $r \ge 0$ such that $Sq^{2^{r_n}}$ $Sq^n x = 0$.

Definition 2.2.3. An unstable A-module M is called nil-closed if (i) M is reduced (ii) An element x in M of even degree is in the image of the cup-square if and only if $Q_i x = 0$, for all $i \ge 0$, where Q_i is the ith Milnor primitive in A.

Example 2.2.4 Let $\mathbb{B}\mathbb{Z}/2$ denote a classifying space of the group $\mathbb{Z}/2$. The unstable A-module $\operatorname{H}^{*}(\mathbb{B}\mathbb{Z}/2)$ is nil-closed indeed, as a graded IF₂-algebra $\operatorname{H}^{*}(\mathbb{B}\mathbb{Z}/2)$ is freely generated by one generator of degree one.

2.3.Computation of $D_s \Sigma^{-(s+1)}M$, M nil-closed and $s \ge 0$.

2.3.1 To state our result we use the functor $R_s : \mathcal{U} \dashrightarrow \mathcal{U}$, $s \ge 0$, introduction in [5] page 29 (see also [9]) whose main properties

287

are:

(i) The module R_SM is a sub-A-module of $H^*(B(\mathbb{Z}/2)^S) \otimes M$. In particular R_SM is an unstable A-module.

(ii) Let $H^*(B\mathbb{Z}/2) = IF_2[u]$ where u is of degree one. We denote by $L_s = H^*(B(\mathbb{Z}/2)^s)^{GL_s(\mathbb{Z}/2)}$ the Dickson algebra, that is the sub-algebra of $H^*(B(\mathbb{Z}/2)^s)$ of invariants under the natural action of the general linear group $GL_s(\mathbb{Z}/2) = GL((\mathbb{Z}/2)^s)$. The module R_sM is the L_s -module generated by the elements $St_s(x)$, x in M. These elements $St_s(x)$ are defined inductively by :

$$\begin{aligned} & \operatorname{St}_{O}(x) = x \quad , \qquad x \in M. \\ & \operatorname{St}_{1}(x) = \sum_{i=0}^{n} u^{n \cdot i} \otimes \operatorname{Sq}_{x}^{i} \quad , \ x \in M^{n}. \\ & \operatorname{St}_{S}(x) = \operatorname{St}_{1}(\operatorname{St}_{S^{-1}}(x)) \quad , \ s \geq 1, \ x \in M \end{aligned}$$

iii) Let $E_+ \mathfrak{S}_2^s$ be the disjoint union of a base point and a contractible space on which the symmetric group \mathfrak{S}_2^s acts freely. For any pointed space X, we denote by $\mathfrak{S}_2^s X$ the quotient of the space $E_+\mathfrak{S}_2^s \wedge (X \wedge \dots \wedge X)$, X is smashed with itself 2^s times, by the diagonal action of \mathfrak{S}_2^s (\mathfrak{S}_2^s acts on $X \wedge \dots \wedge X$ by permutation of the factors). Let $\Delta_s : B_+(\mathbb{Z}/2)^s \wedge X \dots \otimes \mathfrak{S}_2^s X$ be a "Steenrod diagonal" determined by a bijection between $(\mathbb{Z}/2)^s$ and $\{1,2,\dots,2^s\}$. The unstable A-module $R_s H^* X$ is the image of Δ_s in the modulo 2 cohomology.

2.3.2 Let $\Omega:\mathcal{U}$ ----> \mathcal{U} be the left adjoint functor of $\Sigma:\mathcal{U}$ ---> $\mathcal{U},$ that is :

for every unstable A-modules M and N.

We are now ready to state the main result of this paragraph which will be proved in 2.6