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THE FULLER INDEX AND T-EQUIVARIANT STABLE HOMOTOPY THEORY 
by M.C. CRABB 

0. Introduction 
In a remarkable paper [8], published more than twenty years ago, 

Fuller introduced an index which counts periodic orbits of smooth 
flows. Let w be a smooth vector field defined on a (finite-
dimensional) closed manifold X and 9t: X -* X, (t € IR) , the corres­
ponding flow (so that 0Q = 1 and 6fc = w(6t>, where the dot denotes 
differentiation). Suppose that U1 is an open subspace of (0,°°) *X 
such that the set 
(0.1) F = {(T,x) e u1 | 6Tx = x} 
is compact. To such a field w and open set \J , Fuller associates a 
(6-valued index, which vanishes if F is empty. 

In 1985, Ize [10] and Dancer [6] observed, independently, that 
the natural setting for Fuller's index is IT-equivariant homotopy 
theory, TT being the circle group (R/Z. My purpose here is to 
describe their work from the viewpoint of algebraic topology using 
the standard methods of equivariant fixed-point theory over a base. 

The relevance of the !IT-equivariant theory is not hard to see. 
Indeed, if (T,x) Ç F, (0.1), then the compactness of F implies that 
(T,6tx) ç F for all t € IR and, also, that x is not a stationary 
point of the flow (w(x) V 0). So we can define a fixed-point-free 
circle action on F by: 
(0.2) [t].(T,x) = (T,6tTx), 
for t e IR, [t] = t +Z € tR/Z. The Fuller index is , in a sense to be 
made precise, a count of this set F, with the fixed-point-free 
IT-action, over the base (0,°°). 

Each point (T,x) 6 F determines a periodic solution y(t) = 9tx, 
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of period T, of the differential equation: 
(0.3) y " W(Y) = 0, 
or, by re-scaling, a solution a: IR -» X, a(t) = etTx, of period 1 of: 
(0.4) a - Tw(a) = 0. 
It is convenient to make no distinction in notation between a map 
a: IR -> X of period 1 and the corresponding loop a: \R/7L = T£ -* X. 
Then we can think of solutions of (0.4) as zeros of a vector field 
on the infinite-dimensional manifold M = LX of smooth loops TT -> X in 
the following way. (See, for example, Atiyah [1] and Bismut [3] . ) 

Recall that the tangent space T̂ M at a point a 6 M, a:0T-»X, 
can be identified with the space of smooth sections of ot*TX over 3C. 
So we can regard t H> w(a(t)) as a tangent vector w(a) G T M, and the 
vector field w on X thus defines a vector field, of the same name, on 
M. The circle acts on M by rotating loops: ([t].a)(u) = a(t+u), 
for t,u € IR. This IP-action has a generating vector field, s say, 
given by differentiation: 
(0.5) s(a) = a. 
The zero-set of s, or the fixed subspace M , is the space X of 
constant loops. 

Now we have a family vT = s - Tw, T > 0, of 3F-equivariant vector 
fields on M, parametrized by (0,°°) , and the zero-set of vT is 
precisely the set of solutions of ( 0 . 4 ) . Let be the open subset 
{(T,a) € (0,~) XM | (T,a(t)) € X3 for all t € IR} of (0,°°) x M. Then 
the zero-set 
(0.6) {(T,a) € U00 | vT(a) = 0} 
is equivariantly homeomorphic to F, (0 .1) and ( 0 . 2 ) , and so compact. 

The problem is to define an index for such a family of vector 
fields vT with compact zero-set in some open subspace of (0,°°) x M. 
There are technical difficulties in infinite-dimensions: in order 
to apply the Leray-Schauder theory (as described in [ 9 ] , for example) 
it is necessary to replace vT by a "renormalized" field satisfying 
a certain compactness condition. This analysis, which is joint 
work with A.J.B. Potter, will appear elsewhere. In this paper, 
following Dancer [ 6 ] , I shall concentrate on the analogous 
finite-dimensional problem, which illustrates all the algebraic 
topological features of the Fuller index. This is done in Section 
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2. Section 1 reviews the, now standard, equivariant index theory 
over a base for zeros of vector fields and fixed-points of maps, 
developed by DoId, Becker and Gottlieb in the mid seventies. 
Acknowledgments. It is a pleasure to record my thanks to Dr A.J.B. 
Potter for introducing me to the Fuller index and for numerous 
conversations on that subject. This research was supported by the 
SERC (grant 171/114/AD53) at Aberdeen University. 

1. The vector-field index 
This section contains an outline, in a form tailored to the 

applications, of the Poincare*-Hopf index theory for vector fields. 
Whilst this theory can be viewed as a special case of the Lefschetz 
fixed-point theory, it seems worth maintaining a conceptual 
distinction. We confine the discussion to the non-equivariant 
theory. The modifications needed to produce the G-equivariant 
index theory, for a compact Lie group G (acting smoothly on 
manifolds), are technical rather than conceptual. The treatment 
here is strongly influenced by the work of Dold (as in [7] and the 
references there). A detailed account can be found in [12]. 

Consider first a (continuous) vector field v defined on an open 
subset U of a (finite-dimensional) Euclidean space V, and suppose 
that the zero-set 
(1.1) Zero(v) = {x e U | v(x) = 0} 
is compact. The basic index, l'(v,U) say, is a stable map S° -> U+ 
(where the subscript "+" denotes adjunction of a disjoint basepoint). 
It is defined by an explicit geometric construction in the style of 
Pontrjagin-Thom as follows. 

We can regard the vector field v simply as a map v: U -> V. 
Let N cz V be an open neighbourhood of Zero(v) such that N is compact 
and N c U, and choose a (finite) open ball B, centre O, in V so 
small that v(x) £ B for all x C N-N. Using a superscript "+" for 
one-point-compactification, we define a map q: V+ -* (V/(V-B)) A U+, 
by q(x) = [v(x),x] if x E N, q(x) = * (basepoint) if x £ N. Then, 
identifying V/(V-B) = B with V+ by radial extension, we obtain a 
well-defined homotopy class V+ V+A U+, which represents the stable 
map I (v,U) : S° -» U+. 
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1.2 REMARK. At this level the vector-field and fixed-point 
problems are indistinguishable. The construction just described 
defines the Lefschetz fixed-point index of the map f: U -> V given by 
f (x) = x-v(x). The zeros of v are the fixed-points of f. 

Two fundamental properties of the index are evident from the 
construction. 
1.3 PROPERTIES OF THE INDEX. 
(a) Suppose that U1 is an open subset of U containing Zero(v). 
Then T(v,U) = i °¥(v,U'), where i is the inclusion. 
(b) Suppose that U is a disjoint union of open subsets X} and U2. 
Then T(v,U) = i*o¥(v,U<) + î °T(V/U2) ' where i* and i^ are the  
respective inclusions of U1 and U2 in U. 

Composing T(v,U) with the map S° -> U+ which collapses U to a 
point, we obtain a stable map S° -> S° or, in other words, an element, 
I(v,U) say, of the stable cohomotopy ring o)°(*). (The symbol "03" 
is used for unreduced stable homotopy.) This class I(v,U) is the 
traditional Poincare*-Hopf index. Of course, in this case it is 
just an integer and determined by S-cohomology. The definitions 
have been formulated in this way so as to generalize directly to the 
equivariant bundle theory. 

Next we recall the computation of the index for a field with 
isolated zeros. Suppose that Zero(v) lies in the interior of the 
unit disc D(V) in V and that D (V) c U. Then I(v,U) € ca°(*) is the 
stable homotopy class represented by the map of spheres: 
(1.4) S (V) -» S (V) : x » 1 v(x) , 

|v(x)| 
(so in this case the classical degree). With the additivity of the 
index, (1.3) (b), this determines I(v,U) when Zero(v) is discrete. 

In the differentiable case, the index of a non-degenerate zero 
lies in the image of the J-homomorphism. Suppose that the vector 
field v is continuously differentiable (C1) with Zero(v) = {0} and 
the derivative (Dv) (0) : V -> V invertible. Then (Dv) (0) defines an 
element "sign det" of KO*1 (*) = *Z/2, and I(v,U) is the image of this 
class under the J-homomorphism 
(1.5) J : KO_1(*) - o>°(*r e №(*) 
to the group of units o)°(*)* = {±1} in the stable cohomotopy ring. 

74 


