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A Geometric Interpretation 
of Lannes' Functor T. 

E. DROR FARJOUN AND J. SMITH 

1. Introduction. In this note we are concerned with a question raised by [Lannes 2.3]. 
In what follows R will denote a finite field of the form Z/pZ, homology and cohomology 
are always taken with coefficient in R and denoted by H*X etc. For a space X let {RsX}a 
denote the Bousfield-Kan localization tower. We denote by Br the classifying space of 
the underlying abelian group of R. Let P9X denote the s-Postnikov section of X, By a 
"space" we mean a Kan complex or a C.W. complex. 

1.1 Theorem: If H*X < oo for all t > 0, then TH*X S lim, H*{PsR,X)Br, where T is 
Lannes9 functor (see below). If, in addition, X is nilpotent then TH*X = lim 

H*(PsX)Br = UmH^iP.RooX)^ 
The proof of this theorem yields a new proof for Lannes theorem 1.5 below that 

essentially asserts 1.1 for dimension zero and was a the motivation for his question [Lannes 
2.3]. The proof of theorem is based on the following technical proposition: 

1.2 Proposition: Let G —• E —• B be a principal fibration where G is a (topological or 
simplicial) group. Assume that in each dimension the R-cohomology of the mapping spaces 
EB* and BB* is finite. Then if the relation TH*W ^ H*WB* is satisfied by W = E and 
W = B then it is also satisfied by W = G. 

Remark: The finiteness assumption, noted by the referee, is necessary in order to use 
cohomological Eilenberg-Moore spectral sequence. 

Corollary: If W is a nilpotent space of finite type with 7TiW = 0 for i >> 0 or a R-
localization thereof then 

TH*W ^ H*WBr. 

S.M.F. 
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Further, as a direct corollary of 1.1 and 9.3 of [Bousfield] one gets the following 
interesting special case due to Lannes [4]. 

1.3 Corollary. Let HXX < oo for all i > 0 for nilpotent space X of finite type. Assume 
that a given algebraic component TCH*X ofTH*X is finite in all dimensions and vanishes 
in dimension one. Then TCH*X S H*X*T S H^^R^X)** 

where X^r is the corresponding component. 
Another example where the main result (1.1) implies a result on H*map(Br,X) is 

when the latter has a finite homotopy group in each dimension. 

1.4 Corollary: Let X be nilpotent space of finite type with 7TiX finite. Assume that for 
a given f : Br —• X the groups 7r»map(Br, PnX)/„ are finite for all t,n > 0. Then 
H*map(BTiX) = TCH*X where Tc is algebraic component of T that corresponds to /. 

The referee also notes that theorem 1.1 gives a new proof of the following result 
[Lannes, 0.4]. 

1.5 Corollary: If Y is a nilpotent space with Hn(Y,R) finite for all n, then the natural 
map 

[Bt,Y] s [BtyRooY] -* HomK{H*Y,H*Bt) 

is an isomorphism of profinite sets. 
Proof: This follows directly from 1.1 above in light of the algebraic fact [Lannes 3.5] and 
the old result of [Dror] about the tower RSY. 

The authors would like to thank W. Dwyer for his suggestion to consider the tower 
RSX as a starting point for a geometric interpretation of T, and to H. Miller for several 
useful discussions. The authors would also like to thank the referee for his careful reading 
and for correcting a non-fatal error in an earlier version of this paper. The referee notes that 
if one considers the fibration CIX * X for X being the infinite wedge of RP°°/RP2n+2 
over the integers, the formula in 1.2 holds for W = QX but not for X itself. Therefore 
one cannot turn around 1.2 to conclude that either E or B satisfy the property TH*W = 
H*WBt, assuming the other two spaces do. 

2 First examples. 
Let U denote the category of unstable modules over the algebra A of Steenrod reduced 

powers relative to a prime p — char R. Let K denote the category of unstable >?-algebra. 
In [Lannes] a left adjoint T is defined to the functor — <g> H*Br, where the latter is taken 
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either as a functor from U to itself or from K to itself. If one regards an element A 6 K 
as an element of 1/, the value of T does not change. Thus the defining property of T is 
homc{TM,N) = homc{M, N <g> H*BT) where C is either U or K. 

2.1 Three basic properties [Lannes]: (i) T is exact, (ii) T commutes with tensor 
products, (iii) T commutes with direct limits. 

2.2 Motivation: It can be seen from 1.1, 1.2, 1.3 that the construction of T is motivated 
by attempts to describe the cohomology of XBr = map(i?r, X) in terms of H*X, when the 
latter is given as an object in K. Lannes proves the relation between the homotopy class 
[BT,X] and (TH*X)° and X as in 1.3, see [Lannes 7.1.1]. [Miller] proves it for dimX < oo. 

2.3 Example. It is easy to calculate directly from the adjointness relation that if V is a 
finite dimensional vector space over R then 

TH*K(V,n) ^ <g> H*K(V,i) ^ H*map{BT,K(y,n)). 
n>i>0 

Here map(X,Y) denotes the space of maps X —• Y otherwise denoted by 7X. Similar 
calculation holds for a finite products of K(Vi,rii) with dimnVi < oo. However it turns 
out that for homotopically large space one cannot, in general, interpret TH*X as the 
cohomology of map(Br9X), (see 2.5 below). 
2.4. Example. An important class of spaces on which T behaves nicely are finite Postnikov 
pieces of nilpotent spaces. The prime examples of such spaces are K(Z, n) spaces for n > 0. 
Proposition: For anyn > 0 there is an isomorphism TH*K(Z, n) = H*map(Bri K(Z, n)). 

Proof: For p = 2 we show by a direct computation that TH*K(Z, n) ^ H* n X(Z/2Z, 2t). 
For p > 2 the argument is similar. Now since H*K(Z,n) = P{S% \ I admissible with 
ei(I) > 2 and e (I) < n — 1) a map of the algebra H*K(Z, n) over A is given by the image 
of the generator in dimension n. Thus 

homK{K(Z,n),K) = ker/3 : Kn Kn+X 

where K is any object in K and 0 is The Bockstein operation. Now compute: 
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hornK(TH*K(Z,n),K) S homK(H*K{Z,n),K® H*BT) 

~ ker/3 : K <g> H*Br)n — (if <g> IT*5r)n+i 
= fcer/? : 0 Jf. <g) #r 0 if. <g> if y£r 

*+y=n. i+y=n.+ l 
= © = 

3 even 
|n/2] ^homK{H* n K{Z{2Z,i)9K). *=i 

This together with the adjointness property of T completes the proof. Similarly let Zp 
denotes the p-adic numbers ZP = invlim Z/pKZ. Then [B - K VI 6.4] one has an R 
homology equivalence K(Z,n) —*• K(Zp,n) for all n > 0. There is a pro-isomorphism on 
iE-homology of K(Z,n) (K(Z/pKZ, n))n. Therefore 

H*K(Z,n) = H*K(Zp,n) = lirnkH*K(Z/pKZ,n) 

Moreover it follows by a spectral sequence argument that the tower {map(Br^ K(Z/pKZY k))}* 
is an J? completion tower for the function complex map(Br, K(ZY n)), since all function 
complexes involved here are i2-nilpotent. Again using comparison of spectral sequences 
converging to homology we see that there is an .R-homology (hence i2-cohomology) equiv
alence map(Bry K(Z,n)) —> map^Br, K(ZP,n)). Therefore the P-cohomology of the last 
range is isomorphic to the limit of the P-cohomologies limhH*map(BT, K(Z/pKZ,n)). 
But since the functor T commutes with direct limits we get the desired example: 

TH*K{Zp,n) « H*map{Br,K(Zp,n)). 

The second example of K(ZPI n) is in reality equivalent to the first using the isomor
phism of cohomologies H*(BT, Z) = H*(BT, ZP). Since the function complexes hom(BTy K(Z, n)) 
and hom(Br,K(Zpyn)) are built out of these cohomology groups, the map Z —• ZP in
duces a homotopy equivalence between them. Now since TH*K(Zyn) = TH*K(ZP, n) 
one satisfies 2.4 if and only if the other does. 
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