Astérisque

EMMANUEL DROR FARJOUN J. SMITH A geometric interpretation of Lannes' functor T

Astérisque, tome 191 (1990), p. 87-95 <http://www.numdam.org/item?id=AST_1990__191__87_0>

© Société mathématique de France, 1990, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A Geometric Interpretation of Lannes' Functor T.

E. DROR FARJOUN AND J. SMITH

1. Introduction. In this note we are concerned with a question raised by [Lannes 2.3]. In what follows R will denote a finite field of the form $\mathbb{Z}/p\mathbb{Z}$, homology and cohomology are always taken with coefficient in R and denoted by H_*X etc. For a space X let $\{R_*X\}_*$ denote the Bousfield-Kan localization tower. We denote by $B\tau$ the classifying space of the underlying abelian group of R. Let P_*X denote the s-Postnikov section of X. By a "space" we mean a Kan complex or a C.W. complex.

1.1 Theorem: If $H^iX < \infty$ for all $i \ge 0$, then $TH^*X \cong \lim_{\to \infty} H^*(P_*R_*X)^{B_T}$, where T is Lannes' functor (see below). If, in addition, X is nilpotent then $TH^*X \cong \lim_{\to \infty} H^*(P_*R_*X)^{B_T}$.

 $H^*(P_sX)^{B_{\tau}} \cong limH^*(P_sR_{\infty}X)^{B_{\tau}}$

The proof of this theorem yields a new proof for Lannes theorem 1.5 below that essentially asserts 1.1 for dimension zero and was a the motivation for his question [Lannes 2.3]. The proof of theorem is based on the following technical proposition:

1.2 Proposition: Let $G \to E \to B$ be a principal fibration where G is a (topological or simplicial) group. Assume that in each dimension the R-cohomology of the mapping spaces E^{B_t} and B^{B_t} is finite. Then if the relation $TH^*W \cong H^*W^{B_t}$ is satisfied by W = E and W = B then it is also satisfied by W = G.

Remark: The finiteness assumption, noted by the referee, is necessary in order to use cohomological Eilenberg-Moore spectral sequence.

Corollary: If W is a nilpotent space of finite type with $\pi_i W = 0$ for i >> 0 or a R-localization thereof then

$$TH^*W \cong H^*W^{Br}$$

S.M.F. Astérisque 191 (1990) Further, as a direct corollary of 1.1 and 9.3 of [Bousfield] one gets the following interesting special case due to Lannes [4].

1.3 Corollary. Let $H^iX < \infty$ for all $i \ge 0$ for nilpotent space X of finite type. Assume that a given algebraic component T_cH^*X of TH^*X is finite in all dimensions and vanishes in dimension one. Then $T_cH^*X \cong H^*X_c^{B\tau} \cong H^*(R_\infty X)_c^{B\tau}$

where $X_c^{B\tau}$ is the corresponding component.

Another example where the main result (1.1) implies a result on $H^*map(B\tau, X)$ is when the latter has a finite homotopy group in each dimension.

1.4 Corollary: Let X be nilpotent space of finite type with $\pi_1 X$ finite. Assume that for a given $f : B\tau \to X$ the groups $\pi_i map(B\tau, P_n X)_{f_n}$ are finite for all $i, n \ge 0$. Then $H^*map(B\tau, X) \cong T_c H^* X$ where T_c is algebraic component of T that corresponds to f.

The referee also notes that theorem 1.1 gives a new proof of the following result [Lannes, 0.4].

1.5 Corollary: If Y is a nilpotent space with $H^n(Y, R)$ finite for all n, then the natural map

$$[Bt,Y] \cong [Bt,R_{\infty}Y] \rightarrow Hom_{K}(H^{*}Y,H^{*}B_{t})$$

is an isomorphism of profinite sets.

Proof: This follows directly from 1.1 above in light of the algebraic fact [Lannes 3.5] and the old result of [Dror] about the tower R_*Y .

The authors would like to thank W. Dwyer for his suggestion to consider the tower R_sX as a starting point for a geometric interpretation of T, and to H. Miller for several useful discussions. The authors would also like to thank the referee for his careful reading and for correcting a non-fatal error in an earlier version of this paper. The referee notes that if one considers the fibration $\Omega X \to * \to X$ for X being the infinite wedge of $\mathbb{R}P^{\infty}/\mathbb{R}P^{2n+2}$ over the integers, the formula in 1.2 holds for $W = \Omega X$ but not for X itself. Therefore one cannot turn around 1.2 to conclude that either E or B satisfy the property $TH^*W = H^*W^{B_*}$, assuming the other two spaces do.

2 First examples.

Let \mathcal{U} denote the category of unstable modules over the algebra \mathcal{A} of Steenrod reduced powers relative to a prime p = char R. Let \mathcal{K} denote the category of unstable \mathcal{A} -algebra. In [Lannes] a left adjoint T is defined to the functor $- \otimes H^* B \tau$, where the latter is taken either as a functor from \mathcal{U} to itself or from \mathcal{K} to itself. If one regards an element $A \in \mathcal{K}$ as an element of \mathcal{U} , the value of T does not change. Thus the defining property of T is $hom_C(TM, N) = hom_C(M, N \otimes H^*B\tau)$ where C is either \mathcal{U} or \mathcal{K} .

2.1 Three basic properties [Lannes]: (i) T is exact. (ii) T commutes with tensor products. (iii) T commutes with direct limits.

2.2 Motivation: It can be seen from 1.1, 1.2, 1.3 that the construction of T is motivated by attempts to describe the cohomology of $X^{B\tau} \equiv map(B\tau, X)$ in terms of H^*X , when the latter is given as an object in \mathcal{K} . Lannes proves the relation between the homotopy class $[B\tau, X]$ and $(TH^*X)^0$ and X as in 1.3, see [Lannes 7.1.1]. [Miller] proves it for $dim X < \infty$.

2.3 Example. It is easy to calculate directly from the adjointness relation that if V is a finite dimensional vector space over R then

$$TH^*K(V,n) \cong \bigotimes_{n\geq i\geq 0} H^*K(V,i) \cong H^*map(B\tau,K(V,n)).$$

Here map(X, Y) denotes the space of maps $X \to Y$ otherwise denoted by Y^X . Similar calculation holds for a finite products of $K(V_i, n_i)$ with $dim_R V_i < \infty$. However it turns out that for homotopically large space one cannot, in general, interpret TH^*X as the cohomology of $map(B\tau, X)$, (see 2.5 below).

2.4. Example. An important class of spaces on which T behaves nicely are finite Postnikov pieces of nilpotent spaces. The prime examples of such spaces are $K(\mathbf{Z}, n)$ spaces for $n \ge 0$.

Proposition: For any $n \ge 0$ there is an isomorphism $TH^*K(\mathbf{Z}, n) \cong H^*map(B\tau, K(\mathbf{Z}, n))$.

Proof: For p = 2 we show by a direct computation that $TH^*K(\mathbf{Z}, n) \cong H^* \prod_{i=1}^{\lfloor n/2 \rfloor} K(\mathbf{Z}/2\mathbf{Z}, 2i)$. For p > 2 the argument is similar. Now since $H^*K(\mathbf{Z}, n) \cong P(S_q^I \mid I \text{ admissible with } e_1(I) \ge 2$ and $e(I) \le n-1$) a map of the algebra $H^*K(\mathbf{Z}, n)$ over A is given by the image of the generator in dimension n. Thus

$$hom_{\mathcal{K}}(K(\mathbf{Z},n),K) = kereta: K_n o K_{n+1}$$

where K is any object in K and β is The Bockstein operation. Now compute:

$$hom_{\mathcal{K}}(TH^*K(\mathbf{Z},n),K) \cong hom_{\mathcal{K}}(H^*K(\mathbf{Z},n),K \otimes H^*B\tau)$$
$$\cong ker\beta : K \otimes H^*B\tau)_n \to (K \otimes H^*B\tau)_{n+1}$$
$$\cong ker\beta : \bigoplus_{i+j=n} K_i \otimes H^jB\tau \to \bigoplus_{i+j=n+1} K_i \otimes H^jB\tau$$
$$\cong \bigoplus_{\substack{i+j=n \\ j \text{ even}}} K_i =$$
$$= hom_{\mathcal{K}}(H^*\prod_{i=1}^{\lfloor n/2 \rfloor} K(\mathbf{Z}(2\mathbf{Z},i),K).$$

This together with the adjointness property of T completes the proof. Similarly let \mathbb{Z}_p denotes the *p*-adic numbers \mathbb{Z}_p = invlim $\mathbb{Z}/p^k\mathbb{Z}$. Then [B - K VI 6.4] one has an R homology equivalence $K(\mathbb{Z}, n) \to K(\mathbb{Z}_p, n)$ for all $n \ge 0$. There is a pro-isomorphism on R-homology of $K(\mathbb{Z}, n) \to (K(\mathbb{Z}/p^k\mathbb{Z}, n))_n$. Therefore

$$H^*K(\mathbf{Z},n) \cong H^*K(\mathbf{Z}_p,n) = lim_k H^*K(\mathbf{Z}/p^k\mathbf{Z},n)$$

Moreover it follows by a spectral sequence argument that the tower $\{map(B\tau, K(\mathbf{Z}/p^k\mathbf{Z}, k))\}_{s}$ is an R completion tower for the function complex $map(B\tau, K(\mathbf{Z}, n))$, since all function complexes involved here are R-nilpotent. Again using comparison of spectral sequences converging to homology we see that there is an R-homology (hence R-cohomology) equivalence $map(B\tau, K(\mathbf{Z}, n)) \to map(B\tau, K(\mathbf{Z}_p, n))$. Therefore the R-cohomology of the last range is isomorphic to the limit of the R-cohomologies $\lim_{t \to T} H^*map(B\tau, K(\mathbf{Z}/p^k\mathbf{Z}, n))$. But since the functor T commutes with direct limits we get the desired example:

$$TH^*K(\mathbf{Z}_p, n) \cong H^*map(B\tau, K(\mathbf{Z}_p, n)).$$

The second example of $K(\mathbf{Z}_p, n)$ is in reality equivalent to the first using the isomorphism of cohomologies $H^*(B\tau, \mathbf{Z}) \cong H^*(B\tau, \mathbf{Z}_p)$. Since the function complexes $hom(B\tau, K(\mathbf{Z}, n))$ and $hom(B\tau, K(\mathbf{Z}_p, n))$ are built out of these cohomology groups, the map $\mathbf{Z} \to \mathbf{Z}_p$ induces a homotopy equivalence between them. Now since $TH^*K(\mathbf{Z}, n) \cong TH^*K(\mathbf{Z}_p, n)$ one satisfies 2.4 if and only if the other does.