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Spaces of Null Homotopic Maps 
WILLIAM G. DWYER AND CLARENCE W. WILKERSON 

§1. INTRODUCTION 
In 1983 Haynes Miller [7] proved a conjecture of Sullivan and used it 

to show that if w is a locally finite group and X is a simply connected 
finite dimensional CW-complex then the space of pointed maps from the 
classifying space Bit to X is weakly contractible, ie. Map+(J37r, X) ~ * . 
This result had immediate applications. Alex Zabrodsky [11] used it to 
study maps between classifying spaces of compact Lie groups. McGibbon 
and Neisendorfer [6] applied Miller's theorem to answer a question of 
Serre; they proved that if X is a simply connected finite dimensional CW-
complex with H*(X, Fp) ^ 0 then there are infinitely many dimensions 
in which TT*(X) has p-torsion. 

The goal of this note is to use the functor Tv of [2] to generalize Miller's 
theorem and some of its corollaries to a large class of infinite dimensional 
spaces (see [5] for closely related earlier work in this direction). This 
generalization comes at the expense of working with one component of 
the function complex Map^U-zr, X) at a time. 

Fix a prime number p. 
THEOREM 1.1. Let n be a locally unite group and X a simply connected 
p-complete space. Assume that H*(X, Fp) is finitely generated as an al­
gebra. Then the component of Map*(I?7r, X) which contains the constant 
map is weakly contractible. 
REMARK: There is a standard way [7, 1.5] to relax the assumption in 1.1 
that X is p-complete. 

Theorem 1.1 is actually a special case of a more general assertion. 
Recall that an unstable module M over the mod p Steenrod Algebra A P 

is said to be locally finite [4] if each element x 6 M is contained in a finite 
A P submodule. If R is a connected unstable algebra over A P then the 
augmentation ideal I(R) is by definition the ideal of positive-dimensional 
elements and the module of indécomposables Q(R) is the unstable A P 

module I(R)/I(R)2. An unstable algebra i? over A P is of finite type if 
each Rk is finite-dimensional as an Fp vector space. 

Both authors were supported in part by the National Science Foundation. The first 
author would like to thank the University of Chicago Mathematics Department for its 
hospitality during the course of this work. 
S.'tf.F. 
Astérisque 191 (1990) 97 



DWYER & WILKERSON 

THEOREM 1.2. Let ir be a locally unite group and X a simply connected 
p-complete space such that H*(X,FP) is of finite type. Assume that 
the module of indécomposables Q(H*(X, F P ) ) is locally finite as a mod­
ule over A P . Then the component of Maps(s(B7r, X) which contains the 
constant map is weakly contractible. 

REMARK: Theorem 1.1 does in fact follow from Theorem 1.2, since if 
H*(X, F P ) is finitely generated as an algebra then Q(H*(X,Fp)) is a 
finite A P module. 
REMARK: Theorem 1.2 has a converse, at least if p = 2 (see Theo­
rem 3.2). There is also a generalization of 1.2 that deals with other 
components of the mapping space Map+(i?7r,X) (see Theorem 4.1) but 
for this generalization it is necessary to assume that 7r is an elementary 
abelian p-group. 

Given 1.2, the arguments of [6] go over more or less directly and lead 
to the following result. A CW-complex is of finite type if it has a finite 
number of cells in each dimension. 

THEOREM 1.3. Suppose that X is a two-connected CW-complex of finite 
type. Assume that H*(X, FP) ^ 0 and that Q(H*(X, F P ) ) is locally finite 
as a module over A P . Then there exist infinitely many k such that 7Tfc(X) 
has p-torsion. 

REMARK: The example of CP00 shows that it would not be enough in 
Theorem 1.3 to assume that X is 1-connected. 

Some instances of 1.3 were previously known; for instance, if X = BG 
for G a suitable compact Lie group then the conclusion of 1.3 can be 
obtained by applying [6] to the loop space on X. However, Theorem 1.3 
applies in many previously inaccessible cases; for example, it applies if X 
is the Borel construction EG x ^ F of the action of a compact Lie group 
G on a finite complex Y or if X is a quotient space obtained from such 
a Borel construction by collapsing out a skeleton. 

We first noticed Theorem 1.1 as part of our work [1] on calculating 
fragments of Tv with Smith theory techniques. The proof of 1.1 given 
here does not use the localization approach of [1]; it is partly for this 
reason that the proof generalizes to give 1.2. 

Organization of the paper. Section 2 recalls some properties of the 
functor Tv. In §3 there is a proof of 1.2 and in §4 a generalization of 1.2 
to other components of the mapping space. Section 5 uses the ideas of 
[6] to deduce 1.3 from 1.2. 
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Notat ion and terminology. The prime p is fixed for the rest of the 
paper; all unspecified cohomology is taken with Fp coefficients. The 
symbol 14 (resp. JC) will denote the category of unstable modules (resp. 
algebras) [2] over Ap. If R 6 JC then 14 (R) (resp. JC(R)) will stand for 
the category of objects of IA (resp. JC) which are also i?-modules (resp. 
i2-algebras) in a compatible way [1]. 

For a pointed map / : K —• X of spaces we will let Mapstc(jRT, X)f 
denote the component of the pointed mapping space Map* (K,X) con­
taining / . The component of the unpointed mapping space containing / 
is Map(K,X)f. 

§2 THE FUNCTOR TV 

Let V be an elementary abelian p-group, ie., a finite-dimensional vector 
space over Fp, and Hv the classifying space cohomology H*BV. Lannes 
[2] has constructed a functor Tv : 14 —> 14 which is left adjoint to the 
functor given by tensor product (over Fp) with Hv and has shown that 
Tv lifts to a functor JC —* JC which is similarly left adjoint to tensoring 
with Hv. 

PROPOSITION 2.1 [2]. For any object R of JC the functor Tv induces 
functors 14(R) -> 14(TV(R)) and K(R) JC(TV(R)). The functor Tv is 
exact, and preserves tensor products in the sense that if M and N are 
objects ofl4(R) there is a natural isomorphism 

TV(M ®R N) TV{M) ®Tv(*} TV(N) 

Now suppose that 7 : R —> Hv is a /C-map. The adjoint of 7 is a map 
TV(R) —> Fp or in other words a ring homomorphism 7 : TV(R)° —* Fp. 
For M € U(R), let T^(Ad) be the tensor product Tv(M) ®Tv{R)o Fp, 
where the action of Tv(R)° on Fp is given by 7. Note that T^(R) e /C. 

PROPOSITION 2.2 [1, 2.1]. For any K-map 7 : R —> Hv the functor 
T7V(-) induces functors 14(R) -+ 14(T^(R)) and fC(R) -+ K(T^(R)). 
The functor T^ is exact, and preserves tensor products in the sense that 
if M and N axe objects ofli(R) there is a natural isomorphism 

T7V(M ®ii N) ^ T7V(M) <g>Tv(jR) T7V(7V) . 

The following proposition is a straightforward consequence of the above 
two. 
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LEMMA 2.3. Suppose that a : Ri —» R2 and /3 : R2 —• Hv are mor-
phisms of JC, and let 7 : R1 —* i fv denote the composite /3 • c*. 

(1) If a is a surjection and M G U(R2) is treated via OL as an object 
ofU(Ri), then the natural map T^(M) —• T^(M) is an isomor­
phism. 

(2) If M E U(Ri) then the natural map Tj{R2) ®T^{R1) Tjf(M) -> 
Tj(R2 ®R1 M) is an isomorphism. 

There is a natural map \x : TV{H*X) H*Map(BV,X) for any 
space X. li g : BV —* X is a map which induces the cohomology homo-
morphism 7 : H*X —• Hv then Ax passes to a quotient map 

\x,9 : T^(H*X) -+ H* Map(BV,X)g . 
A lot of the geometric usefulness of Tv is explained by the following 
theorem. 
THEOREM 2.4 [3]. Let X be a 1-connected space, g : BV —• X a map, 
and 7 : H*X —• Hv the induced cohomology homomorphism. As­
sume that H*X is of Unite type, that T^H*X is of finite type, and 
that TV H*X vanishes in dimension 1. Then \x,g Is a& isomorphism. 

For any object M of U the adjunction map M —• Hv ®pp TV(M) can 
be combined with the unique algebra map Hv —• Fp to give a map M —• 
TV(M); call this map e. (If M = H*X for some space X, then € fits into a 
commutative diagram involving Ax and the cohomology homomorphism 
induced by the basepoint evaluation map Map(J3V, X) —+ X.) 
THEOREM 2.5 [4, 6.3.2]. The map e : M —+ TV(M) is an isomorphism 
iff M is locally finite as a module over Ap. 

If R G /C, M G IA(R) and 7 : R —• Hv is a /C-map, we will denote 
the composite M A TV(M) -> T^(M) by e7. Theorem 2.5 leads to the 
following result, which we will need in §4. 
PROPOSITION 2.6. Let M be an object ofU(Hv) and t : Hv Hv the 
identity map. Then eL : M —• T^(M) is an isomorphism iff M splits as 
a tensor product Hv ®Fp N for some N G U which is locally finite as a 
module over Ap. 
PROOF: The fact that eL is an isomorphism if M has the stated tensor 
product decompositon follows directly from 2.3(2), 2.5 and [2, 4.2]. Con­
versely, under the assumption that eL is an isomorphism Proposition 2.4 
of [1] guarantees that M splits as a tensor product Hv ®FP N for some 
N G U; the fact that N is locally finite is again a consequence of 2.3(2) 
and 2.5. 
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