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MICRO-COMPUTER PROLOG AS A HANDY TOOL  
FOR FORMAL ALGEBRAIC COMPUTATIONS 

Kat suyuk i Sh ibata 

Prolog is a logic programming language, and its grammer is based on 
the first order predicate logic. It has in itself an inference mechanism 
which runs automatically. Since logic and mathematics are near in a 

naive sense, it is not surprising that sometimes the translation from 
mathematical formulas to a Prolog program is straightforward and that 
they look very similar. I will shortly show it by explicit examples. 

From this point of view, Prolog seems to be a very good language for 
those mathematicians who are not specialists of computer sciences and 
who are not so much interested in learning the details of computer me
chanisms. 

But let me first explain about the Gelfand-Fuks cohomology of a 
smooth manifold. My experience on micro-computer Prolog was to compute 
a part of that cohomology in the sphere case. 

§ 1. Gelfand-Fuks cohoiology 

Let M be a paracompact Hausdorff smooth manifold and L n be the Lie 
algebra of smooth tangent vector fields on M equipped with C00-topo 1ogy. 
(XM is also denoted as I (M) or as Vect(M).) And let Cc(Ln)= ©Cg(Xn) 
be the Koszul complex of continuous cochains of the topological Lie al
gebra oL M. Namely the graded vector space C3(«£~n) is defined to be the 
set of all the continuous, alternating q-linear forms 
S.M.F. 
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f : L n x ... x L n • R . 
( q times ) 

And the differential d : C8(.LM) • C8 + 1(.L(i) is defined by the for
mula 

i J 
(dfXXi.Xa Xq.i) = X (-1) '+jf([Xi. Xj], Xi, . . \ . \ . . Xq + i). 

1 < i < j < q + 1 

By the Jacobi identity of Lie algebra, d<>d = 0 holds and we can take 
the cohomology of CS(oLn) with respect to d. 
DEFINITION. The Gelfand-Fuks cohomology KZ(L n) of the manifold M is de
fined to be the cohomology H * ( Cc ( JL n ) ; d) . 

The Gelfand-Fuks cohomology is related to the theory of exotic chara
cteristic classes of foliations and is interesting in various aspects. 

Gelfand and Fuks proved, among other things, the following finiteness 
theorem for the additive structure of HS(OLM). 

THEOREM (Gelfand-Fuks [1]). 
I_f dimR (IT (M ; R )) < <» . then d i m R (H 8 ( L n )) < «> for every q. 

In contrast to this, we have proved the following theorem concerning the 
multiplicative structure of HS(oLn). 

THEOREM (Shibata [4]). 
If dimR(H* (M; R)) < 00 , then HS(X n) is finitely generated as an R-a1 

-gebra if and only if either of the following two conditions holds; 
(1) dim M ^ 1 (ie. M = a fini te union of {pt}, S1, and R1), or 
(2) H*(M;Q) = 0 (i_e. M is rat ional ly acyc lie). 

For the proof of this theorem, we computed Haefliger's model for CS ( 
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<L n) constructed by using Sullivan's minimal model theory in rational 
homotopy theory. This computation was done by hand, but later we became 
interested in using a computer for computations in explicit examples. 

In case M is the n-dimensiona1 sphere Sn, Haefliger's model reduces 
to the Koszul cochain complex C* ( H* ( Sn ; R)®L (Vn) ) of Lie algebra H*(Sn; 
R)®L(Vn), where Vn is a certain finite dimensional graded vector space 
depending on n, L(Vn) is the free graded Lie algebra over Vn, and the 

Lie product in the above tensor product is defined as 

[x®£, x* ®e' ] = ± xx' ® ie,e* ]. 

The ordinary (not necessarily continuous but all cochains) cohomology of 
this Lie algebra is isomorphic to HS(X̂ n) (Haefliger [2]). 

We now know that this cohomology algebra is not finitely generated if 
n ^ 2, but our knowlege is far from complete. There are too many mul

tiplicative generators. Therefore we are interested in computing the co
homology of the Lie algebra H* (Sn; R)0L (Vn). 

To begin with, we must know in detail the product structure of a free 
Lie algebra. To avoid tedeous sign calculations, I neglect the odd 

degree elements of Lie algebra in the explanations of the following sec
tions. 

§ 2. Hall basis criteria prograi 

Let V be a vector space (over Q or R) and B = {xi,X2,...} be a well-
ordered basis of V. 
DEFINITION. A well-ordered subset H C L(V) is a Hall set relative to B 
if 

(H-l). H = U Hn. where Hn consists of elements of length n, Hi = B, and 
the ordering in H satisfies the condition 
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x < y if (length x) < (length y). 
(H-2). H2 = |[x,y]; x,y € B, x < y}, and 
(H-3). U Hn = {[Y.[X.Z]]; X.Y.Z. [X.Z] £ H. Y ̂  X, Y < [X.Y]}. 

n i 3 
It is known that a Hall set is an additive basis for L(V). 
Given a Lie product element in L(V), we want to know whether it be

longs to H or not. I am going to write down a Prolog program for that. 
For simplicity's sake, I treat only the case where dim V = 2. The 

case for dim V = n > 2 is completely analogous. So let us assume B = 
{x.y} with x < y. 

/* Hall basis criteria program */ 
hall_basis(x). 
hall_basis (y). 
hall_basis([x,y]). 
hall_basis([Y, [X,Z]]) :-

hall_basis(X), hall_basis(Y), hall_basis(Z), hall_basis([X.Z]), 
(Y = X ; smal ler (X, Y)), sma 1 1er ( Y, [X, Z]). 

smaller(x.y). 
smaller(X.Y) :- 1ie_1ength (X,M), 1ie_1 ength (Y, N), 

(M< N ; 
(M = N, X=[U.V], Y=[W,Z], (smal ler (V, Z) ; (V = Z, s maller ( U, W)) ) ) ) . 

lie_length(x, 1). 
lie_length(y, 1). 
1ie_length( [X,Y],N) :- 1ie_1ength(X.L). 1ie_length (Y,M), N is L + M. 

In Prolog, each logical line ends with a full stop. A logical line 
may be written in several phisical lines if it is long. Each logical 
line is called a Horn clause. (Horn is the name of a logician.) There 
are two kinds of Horn clauses; those containing the symbol and 
those without it. The symbol means the logical "if, and "A:-B" 
means "statement A is true if statement B is true." This type of Horn 
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