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Distribution of supersingular primes 
Noam D. Elkies 

Let E be a fixed elliptic curve over Q without complex multi­
plication, and let JE be its j-invariant. A supersingular prime for E 
is a rational prime p such that (i) E has good reduction mod and 
(ii) the reduced curve EP = E mod p is supersingular; observe that 
condition (i) excludes only finitely many primes (those dividing the 
discriminant of E ) , and condition (ii) depends only on JE- Follow­
ing [7] we define TTQ(X) to be the number of supersingular p < x, and 
ask for the asymptotic behavior of 7r0(x) as x —•» oo. A naive heuris­
tic suggests that, since (for p > 5) EP is supersingular if and only if 
it has p+ 1 points over Fp, while in general its number of Fp-points 
could differ from p+ 1 by as much as dt:2p1/2, each p is supersingu­
lar with "probability" roughly p-1^2, and so (summing over p < x) 
the expected value of 7r0(x) should be roughly x1/2/ logx. Refine­
ments of this heuristic, together with numerical evidence gathered 
for several curves E, led Lang and Trotter to make the 

CoNJECTURE[7]: 7T0(X) = (C + o(l))x1/2/ logx, for some explicit 
C > 0 depending on JE-

But it is not even immediately obvious that either 7r0(x) = 
o(7r(x)) (that is, that the supersingular primes have density zero) 
or that 7TQ(X) 7^ Oil) (i.e. that there are infinitely many such 
primes). The former was proved by Serre in 1968 [8] by apply­
ing the Cebotarev Density Theorem to the number fields generated 
by the coordinates of the torsion points of E; later [9] he com­
bined this idea with sieve techniques to obtain the upper bound 
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^o(x) <C x/log3/2-6 (the exponent 3/2 — e was recently improved 
by D. Wan [10] to 2 — e), and further proved that under the Gen­
eralized Riemann Hypothesis (GRH) for these number fields the 
same method would yield 7To(x) <C X3/4. The infinitude of super-
singular primes was proved by me in 1986, and generalized in my 
thesis to curves defined over an arbitrary number field with a real 
embedding [2, 3]. The main purpose of this report is to describe 
recent progress on an upper bound for 7TQ(X). We start, however, 
with a few remarks on the lower bounds that can be obtained from 
the methods of [2], both to put the upper bounds in context and 
to introduce some ideas that also figure prominently in these new 
upper bounds. 

For positive D = 0 or 3 mod 4, let PD(X) be the minimal poly­
nomial of the algebraic integer j((D-\-\/—D)/2). In [2] it was shown 
that, if {pi,/->2? • • - iPn} is a finite set of primes containing all of £"s 
primes of bad reduction, and / = 3 mod 4 a sufficiently large prime 
of which all the pi are quadratic residues (the existence of such I is 
guaranteed by Dirichlet's theorem on primes in arithmetic progres­
sions), then one of JPI(JE) and P±I(JE) is divisible by a prime pn+i? 
distinct from each of pi, . . . ,pn, which is a new supersingular prime 
for E. Iterating this procedure we not only obtain the infinitude of 
supersingular primes, but also an implicit upper bound on pn, and 
thus equivalently a lower bound on TTO(X): Dirichlet's theorem gives 
an effective bound on the least admissible /, and the absolute value 
of the numerator of PD(JE) (and thus also its factor is easily 
bounded above by 0 (exp C • D1/2 log2 D). Unfortunately this bound 
on pn is astronomical—an n-fold iterated exponential!—unless we 
assume the GRH for real Dirichlet characters. Applying the stan­
dard explicit formulas for the number of primes in an arithmetic 
progression, we then find that 7TQ(X) ^> log log log x; this bound, 
since independently discovered by Brown [1], has been improved 
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by R. Murty to TVQ(X) » (log log a:)1/2. A better method is to as­
sume that the Pi(l <i <n) already comprise all the supersingular 
primes less than x, and then use not only the first but all admissible 
primes / <C x1//2, obtaining many new supersingular primes between 
x and x' <C exp(Cfx1/4 log2 x), all distinct by [4]. Assuming again 
the GRH, we find that either 7r0(x) logx or there are enough 
admissible I <C xxl2 to ensure 7r0(:r') ^> logx'; either way we obtain 
the bound (Theorem 2 in my thesis): 

T H E O R E M A: Under GRH for real Dirichlet characters, TTQ(X) ^> 

log log x. 

It occurred to me in 1987 that these ideas might be useful for 
getting an upper bound on 7T0(x); one version of this idea, mentioned 
in my thesis, is the 

OBSERVATION (with R. Murty): If, for some positive 6, each su­
persingular prime p of E divides PD(JE) for some D <C pe, then 
TTO(X) <C x30/'2 logx. 

Indeed, by the above estimate on the size of PD(JE), the product of 
all of £"s supersingular primes less than x would divide the product 
of the numerators of PD(JE) over D <C xe, which is bounded by 

n exp(C • £>1/2log2£>) <C expO(x3^2log2o;); 

so the sum of these primes' logarithms would be x30?2 log2 a;, and 
their number O(x30l2 log x). [Several remarks are in order here: 
First, that for this Observation to be of any use we must have 6 
strictly less than 2/3; second, that this proof fails only when E 
has complex multiplication, because that 's exactly when one of the 
PD(JE) vanishes (and fail it must in that case, since for a CM curve 
7TQ(X) ~7r(x)/2); third, that the bound 7TQ(X) <C x30/2logx would be 
unconditional, not depending on GRH or other unproved hypothe­
ses, provided the same was true of the proof of D <C pB\ and last. 

129 



ELKIES N. 

that we can save a factor of log a; by more carefully estimating the 
size of TlD<:x9 PD(JE), obtaining D <C pe TT0(X) <C X30/2.] 

Thus the problem of estimating #, which I raised in [2] in the 
context of computing large supersingular primes, assumes a new 
theoretical significance. Now p divides PD(JE) if and only if the su­
persingular curve EP has complex multiplication by (D + y/—D)/2, 
that is, if the quadratic order Z[^(D + y/—D)] imbeds into the 
endomorphism ring A of EP, or equivalently if A contains an endo-
morphism a whose discriminant (<x — &)2 = Tr2(a') — 4 deg(a) is —D. 
Thus the least D such that p divides PD(JE) is the smallest nonzero 
value attained by the positive-definite quadratic form (4deg — Tr2) 
on the rank-3 lattice Ai = A/Z. In [2] I used a simple geometry-
of-numbers argument to estimate this value: A\ has covolume 2p 
(this follows from Deuring's theorem that A has reduced discrimi­
nant p), so it must contain a nonzero vector of norm at most 2p2/3. 
Unfortunately this gives only 6 — 2 /3 , the smallest useless value 
of 0. 

But computations suggested that this bound might not be best 
possible. Indeed, recently Kaneko obtained [6]: 

T H E O R E M : Ep has an endomorphism of discriminant (-D) for 
some positive D < 4y/p/3. 

Sketch of proof: Note that while in general a supersingular j -
invariant in characteristic p need only lie in Fp2, the j-invariant of 
EP is necessarily in Fp (though most of its endomorphisms can only 
be defined once we extend scalars to Fp2). Thus A contains a square 
root 4> of — namely the Frobenius endomorphism. Kaneko now 
uses Ibukiyama's classification [5] of such quaternion algebras A 
to show that A/Z contains a rank-2 sublattice of determinant 4p, 
whence the Theorem follows. This sublattice consists of the lattice 
vectors orthogonal to the image of the Frobenius endomorphism d> 
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