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THE NUMBER OF ABELIAN GROUPS OF ORDER AT MOST x 

by 

D.R. HEATH-BROWN 

1. Introduction 

Let a(n) denote the number of isomorphism classes of Abelian groups of 
order n. The arithmetic function a(n) is multiplicative, and has a generating 
series 

oo 
E 
n=l 

a(n)n s = C(s)C(2s)<(3*)-" • 

We shall be concerned here with the counting function 

A(x) = E 
n<2 

a(n) , 

first considered by ERDOS and SZEKERES [2]. One expects that A(x) will be 
approximated by J^CjX1^, where 

Cj = 
OO 
n 
k=l C(k/j). 

Indeed, if we write 

A{x) = 
5 

E 
i-

CjX1/j + A(x), (1.1) 

then it is known on the one hand that 

A(x) < x 9 7 / 3 8 1 ( l o g x ) 3 5 

(KOLESNIK [8]), and on the other, that 

x 

1 
A(x)2dx = Q(X4^logX) (1.2) 
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HEATH-BROWN D.R. 

(Ivic [7] ; see also BALASUBRAMANIAN and RAMACHANDRA [1]). Thus 

A(x) = D(x1/6(logx)1/2), 

so that the extra terms in the sum (1.1) that would correspond to j > 6, cannot 
be relèvent. Note that 

97 

381 
= 0.25459-•• > 0.16666-•• = 

1 

9 , 

Our aim is to prove an upper bound corresponding to (1.2). 

THEOREM 1. We have 

x 

3 
&{x)2dx < X 4 / 3 ( l o g X ) 8 9 

for X>2. 

Apart from the exponent of log X this is, of course, best possible. Ivic [6] 

has given a weaker estimate with exponent 
39 
29 

in place of 
4 

3 
. A result similar to 

Theorem 1 was stated by BALASUBRAMANIAN and RAMACHANDRA [1], but it 
appears that their claim cannot be substantiated. We have made no attempt 
to obtain a good exponent for the power of log X in Theorem 1. 

Our method is an elaboration of that used by the author [4] to estimate 

T 

o 
c ( 

5 
8 

+ it ) 
8 

dt . 

We take this opportunity to point out that exactly the same technique yields : 

THEOREM 2. We have 

T 

0 
c ( 

11 

20 
+ it ) 

10 
dt < r 3 / 2 ( l o g r ) 5 2 

and 
T 

o 
c ( 

9 

20 
+ it ) 

10 
dt < T 2 ( l o g T ) 5 2 

forT > 2. Hence, in the generalized divisor problem, one has /3s < 
9 

20 . 

These results (with the exponent 52 replaced by 50) have been given 
without proof by ZHANG [11]. 
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Finally we observe that our method for proving Theorem 1 has a little to 
spare. An examination of the proof shows that the key estimate (3.1) can be 
obtained with a saving of a power of T, except when M and N differ only by a 
factor of a small power of T. In this latter case further arguments are available 
covering all possibilities except that in which M and N are both small powers of 
T. This argument suggests that one might actually hope to obtain an asymptotic 
formula for the integral in (1.2). 

2. Mean-Value Bounds 

To estimate the average of A(x)2 we shall use the analysis of Ivic [6 ; 
pp.19-21]. After suitable modifications, this leads to 

x 
]Xj2 

A(x)2dx < X 4 / 3 ( l o g X ) 8 max 
1<T<X 

T-1 IT, (2.1) 

where 

IT = 
T 

T/2 
|C(1 - <r + it)((l -2a + 2it)C(3a + 3it)((4a + Ait)((5a + 5it)\2dt , 

and 
a = 

1 
6 + 

i 
logX 

In view of the inequality 2|a6| < a2 + 62, we have 

IT < max(Jy, J'T) , (2.2) 

where 
JT = 

T 

T/2 
|C(3(7 + 3i*)2C(4<7 + 4it)4((5a + 5it)4\dt (2.3) 

and 
JT 

T 

T/2 
|C(3<J + 3^)2C(1 - o + it)4C(l - 2a + 2itf\dt . 

Since the estimation of JT and J'T is similar, we shall henceforth restrict our 
attention to Ĵ -

We replace the integral in (2.3) by a sum over well-spaced points tn G 
[r/2,T] for which 

Km - *n| > 1 (m ̂  n) . (2.4) 

Since 
C(8) E 

n<K 
n-5 + 0(1) (T < K < 2T) 
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for 
|Im(s)| < 5T , 

1 
2 

< Re (s) < 
7 
8 5 

by TlTCHMARSH [10, Theorem 4.11], we have, for example 

((3a + 3it) <( logT) max 
L<T 

\S3(L,Zt)\ , (2.5) 

where L runs over powers of 2, and 

S3(L,3*) = E 
£<n<2£ 

n-3<r-3i< 

Of course, for the value of L giving the maximum in (2.5) we will clearly have 

\S3(L,3t)\> |S 3(1,3*)|> 1 • 

Similarly 
C(4a + 4i*) < ( l o g r ) max 

M<T 
M~1/6\S4(M, 4«)| 

with 
S4(M,4t) = E 

M<n<2M 
Ml/6n-4,-4it ^ (2.6) 

and 
C(5<j + 5it) <( logT) max 

N<T 
iV-1/3|55(iV,5<)| , 

with 
S5(JV,5<) = E 

N<n<2N 
N1/3n~5a~bit . (2.7) 

It follows that 

jT < ( w r ) 1 3 M - 2 / 3 i v - 4 / 3 

E 
n 

\S3(L, 3t„) 25 4(M, 4*„)4S5(iV, 5t„)4| 

for certain fixed L, M, N with 

|S 3(L,3/ n)|,|S 4(M,4* n)|,|S 5(JV,5/ n)| > 1 • 

We proceed to classify the points tn according to the ranges 

U<\S3\<2U , V <\S4\<2V 
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