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EXPONENTIAL SUMS AFTER BOMBIERI AND IWANIEC 

by 

M.N. HUXLEY 

BOMBIERI and IWANIEC [BI1, BI2] obtained 9 = 9/56 for the Lindelof 
exponent (the least 9 for which the Riemann zeta function satisfies 
C(l/2 + i<) = 0(te+£) as <->oo.) 

They remarked that their method might not be special to the Lindelof 
problem; in fact, as the saying goes, "they wrought [worked] better than they 
knew". 

To show that one property is uniformly distributed with respect to another 
property, one forms exponential sums 

5 = 
2 M - 1 

M 
e{f[m)) , (1) 

where 
e(x) = exp 2nix, f(m) = TF(m/M) 

with F(x) in the function class Cn[l — <5,2 + 6] for some 6 > 0 and n > 4. 
The case F(x) = log x gives Dirichlet series. If F(x) is a polynomial of degree 
d with rational coefficients, denominator g, and if T = Md, then the sum 5 is 
approximately 

MSJq , 

where Sq is a complete exponential sum with denominator q. One imposes 
conditions to prevent F(x) from being well approximated by a polynomial for a 
long interval of values of m. A sufficient condition is that F(x) be holomorphic 
on a neighbourhood of the segment 1 < x < 2 of the real axis, and satisfies 
there 

F'(x) = (l + o(l))x-s 
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for some real s > 0. This condition is called the "virial" or "monomial" 
condition. It holds in many applications. 

There are three useful ideas for treating exponential sums : 
O. Subdivide the range for ra, 
A. Cauchy's inequality, 
B. Poisson summation. 
The name "Step A" is usually given to Weyl's differencing lemma, which may 
be analysed as subdivision, followed by Cauchy, followed by averaging. Van der 
Corput's method [see GK, I or Kjconsists of iterating these steps. The simplest 
form of Van der Corput's method, applying steps O, A, B (read from left to 
right) gives 

S = 0(Mll2Tl'«) . 

The method can be applied to exponential sums in several variables, and it 
becomes extremely complicated. 

Bombieri and Iwaniec obtained 

S = 0(M^2T9^e) 

by taking the steps in the order O, B, A. The method is arithmetic, and is essen
tially limited to one variable. Their subdivisions correspond to approximations 
to f(m) by quadratic polynomials with rational coefficients. If the denominator 
q of the leading coefficient is small, the short interval is a "major arc", length 
N say, and the sum over the short interval is approximately 

NSJq . 

If q is large, the short interval is a "minor arc", and one expects the sum over 
the short interval to be small. This behaviour is seen in computer studies of 
exponential sums, notably those of DESHOUILLERS [D]. The Cauchy inequality 
is employed to show that the minor arc contribution is small in Lp norm (for 
some suitable p). In some ways the treatment resembles applying Hardy and 
Littlewood's Farey dissection to 

l 
0 

N 

n=1 
e(f(n + aM))da . (2) 

If all arcs are treated as major (steps 0,B alone), one gets 

5 = 0 ( M 1 / 2 T 1 / 6 + £ ) . 
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This method is no worse than that of Van der Corput. 

At the same time JUTILA [J 1-8] has been considering sums 

2 M - 1 

M 
r ( m ) e ( / ( m ) ) , (3) 

where r(m) is the divisor function or the Fourier coefficient of a modular form, 
beginning with steps O, B where O is subdivision according to the rational 
approximation to the first derivative, B is Voronoi or Wilton summation. In 
this context the numbers r(m) e(—am/q) are the coefficients of the modular 

form twisted by the matrix q —a 
0 q 

, and the Wilton summation formula is 

still available. These ideas could extend to any motivic L-series characterised 
by the three conditions : 

D. An ordinary Dirichlet series with denominators n" s , 
E. An Euler product, 
F. Functional equations for the L-series and its twists. 

One may fit Bombieri and Iwaniec's ideas into this frame by taking r(m) 
to be the theta-function coefficients, 2 if m is a perfect square, 0 if not, and by 
considering F(x) as a function of x2. This change ̂ of variable explains why the 
derivatives do not correspond. 

There are two successful applications of the Bombieri-Iwaniec method to 
sums with an extra variable. The Weyl step O, A replaces the sum 5 of (1) 
with double sums of the form 

2H-1 

h=H 

2 M - 1 

m—M 
e(f(m + h)-f(m)). (4) 

This sum suggests the simpler sum 

2H-1 

h=H 

2M-1 

m—M 

e(hf'(m)). (5) 

The sum (5) was estimated by IWANIEC and MOZZOCHI [IM] using the 
same method. The rational polynomial approximation to hf(x) is found by 
multiplying the approximation to f(x) by fe, so h must not be too large. HEATH-

BROWN and HUXLEY [ H B H ] estimated (4) - actually in the form 

2H-1 

h=H 

2M-1 

m—M 

e(f(m + h)- f(m-h)). (6) 
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This in turn gives estimates for 

J-u 
\S(T0+T)\2dT, (7) 

where S(T) is the sum (1) considered as a function of T, if H goes up to TQ/U 
in size. 

More general multiple exponential sums have not been treated, since one 
cannot find a good approximation by a rational polynomial. 

The Iwaniec-Mozzochi sum (5) is connected with numerical integration. 
The prettiest case is the discrepancy for a circle (or more generally a smooth 
closed curve), the number of integer points minus the area. For a circle radius 
i?, approximating the circle by a polygon whose sides lie along lattice lines x = 
integer, y = integer shows that the discrepancy is O(R). Voronoi's method, 
applied by Sierpinski, approximates the circle by a polygon with rational 
gradients. Sierpinski obtained a discrepancy 0 ( i ? 2 / 3 ) if the centre of the circle is 
at an integer point. The method can be modified [H2] to give 0(i? 2 / 3 ( log i? ) 4 / 3 ) 
in general. 

Exponential sums are introduced by way of the row-of-teeth function 

p(<) = [ < ] - * + 1 / 2 = 
h=0 

e(ht) 
2nih 

Thus 

m 
pU{# - m 2 ) ) 

can be expressed in terms of terms of the sums (5). The subdivision in step O 
corresponds to the sides of the Sierpinski polygon, with q as the denominator 
of the rational gradient a/q. 

Minor arc contributions can be classified as follows. 

El. The "main term", estimated in Lp norm, 
E2. Edge effects from ends of ranges of summation, 
E3. Approximation errors in each summand in each Poisson summation. 

The O, B, A sequence is dangerous because the errors of types (E2) and 
(E3) from each short sum in the subdivision must be added. For the sum S 
of (1) there is a finite Poisson summation modulo g, followed by a Poisson 
summation in m, giving an Airy integral. For the double sums (5) and (6) 
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