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GLOBAL FIELDS, CODES AND SPHERE PACKINGS 

by 

Michael A. TSFASMAN 

Introduction 

We are going to apply some simple algebraic geometry and number theory 
to codes and sphere packings. These constructions look rather exciting since on 
the one hand they lead to considerable progress in codes and packings, and on 
the other hand they concern rather deep properties of global fields. Moreover 
they look quite lucid and simple. Here we present eight constructions of this 
kind leading to asymptotically good families. 

Section 0 provides some necessary definitions concerning codes and 
packings (this paper is addressed to those knowing what a global field is). 
Then (in §§1-8) we discuss eight constructions. Each of them is characterized 
by the following data : 1) we use either number (TV), or function (F) fields; 
2) we use either additive (A), or multiplicative (M) structure; 3) we obtain 
either lattice packings (L), or codes (C) ; 4) the construction either depends 
on a divisor (D), or not. These are the meanings of abbreviations we use in 
the titles of sections. For each construction we estimate parameters and try to 
produce asymptotically good families. 

Section 1 is due to the author (it is exposed, e.g. in [LI/Ts] §7, [ C O / S L ] 
ch.8 §7, [ T S / V L ] ch.5). The construction of §2 was historically the first and 
is due to GOPPA [Go 1], its asymptotic significance was first understood 
in [ T S / V L / Z I ] (for a detailed exposition see [ T S / V L ] ) . Section 3 is due to 
LENSTRA [LE]. The next four constructions (§§4-7) are due to ROSEN BLOOM 

and the author [Ro/Ts] . The construction of §5 has been independently 
discovered by QUEBBEMANN [Qu]. The construction of §8 is again due to 
GOPPA [Go 2]. The last section is devoted to some remarks and open problems. 

S.M.F. 
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0. Packings and Codes 

Notation. In what follows log denotes log 2, and In denotes log e. By ~ we 
mean asymptotic equality and by > asymptotic inequality (up to a function 
tending to 0). 

Sphere packings. We first consider a classical problem of packing equal 
non-overlapping spheres in Rn. Let L be the set of centers and set 

d = d(L) = inf 
v, u E L, v=u 

\u — v\, 

d is the minimum distance of the packing, it equals the maximum possible 
diameter of non-overlapping open spheres centered in L. 

The density of L is the part of RN covered by spheres ; to be precise, it can 
be defined as 

A — A(L) = lim sup 
c—>-oo 

vol(S n Bc) 
vol(B c) ' 

vol being the standard volume in RN , S = {x € \x — u\ < 
d 
2 

for some 

u e L} , Bc = {x e RN\ \x\ < c } . 

Let VN = 
iN/2 

r ( f + 1) 
be the volume of unit sphere. We define some other 

parameters setting 

6(L) = A(L 
VN 

v(L)=hg6(L) , 

7 ( i )=mL) f / N , 
A ( L ) = -

1 
N 

l o g A ( L ) ; 

6(L) is called the center density, and the most important (for our purposes) 
parameter X(L) is called the density exponent. 
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Lattices. The most interesting case is when L is an additive subgroup of 
R^ , i.e. a lattice (we suppose that d(L) > 0 and A(L) > 0). For a lattice L 

ML) = -
1 

N 
log 

d(L)NVN 
2N detL 

where detL = vol(R^/L) is the volume of fundamental domain. 

Each lattice corresponds to a quadratic form f(x) on a free Z-moclule of 
rank AT, and the problem of finding the smallest possible A (i.e. the largest 
possible A) is equivalent to another classical problem of finding a form of 
discriminant 1 with the maximum value of i(L) = min f(x), cf. [Mil. 

xeN-{o} 

Asymptotic behaviour. In this paper we are interested in lattices of 
high rank. Let {L/v C R ^ } be a family of lattices with TV —» oo. Set 

\({LN}) = liminf X(LN). 
N—>-oo 

A family of lattices is called asymptotically good iff \({L^}) < oo. Using the 
Stirling formula we see that 

\({LN}) ~ - l o g ne 

2 
H-logVÎV - l o g d ( L ) + 1 

N 
log(detL). 

Note that asymptotically 7 ~ 
27V 

ire 
4 " \ 

It is known that A ( { L ^ } ) > 0.599 (the Kabatianski-Levenshtein bound, 
valid also for non-lattice packings) and that there exist families of lattices with 
A({L/v}) < 1 (the Minkowski existence bound). 

However it is in fact very difficult to construct asymptotically good lattices 
explicitly (cf.[Co/SL] , [Ll/Ts]), and each construction leading to good lattices 
is of interest. (Natural families of lattices, such as TN and root lattices AN and 
DN , are asymptotically bad). 

Codes. Let Fg be a finite field. Being finite the space F^ is equipped with 
the natural notion of volume (the number of points) and with the Hamming 
norm \\v\\ = \{i | V{ 7 ^ 0} | . Hence for this space there also exists a packing 
problem. A code is a set of points C C F^, n is called its length, k = log \C\ 
is its loa-cardinality, d = min \\u — v\\ is its minimum, distance. The 

v,uEC, v=u 
relative parameters are the rate R = R(C) = k/n, and the relative distance 
8 = 6(C) = d/n. 
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Linear codes. A code is called linear iff it is a linear subspace. For such 
a code k is an integer and d = min lldl. 

vec-{o} 

Asymptotic behaviour. Let {Cn C F^} be a family of codes with n — 
oo. In contrast with sphere packings, codes have two asymptotic parameters 8 
and R (the reason is that in R^ rescaling is possible and we can always set 
d(L) = 1). Set 

<5({C„}) = hmsup<5(Cn), 
n—•oo 

R({Cn}) = limsup R(Cn). 
n—>>oo 

A family of codes is called asymptotically good iff 8({Cn}) > 0 and R({Cn}) > 0. 

It is known that for any 8 £ o, 
q - 1 

Q 
there exist families of linear codes 

{Cn} with 

and 

6({Cn}) = 6 

R({Cn}) > l - Hq{6) 

(the Gilbert-Varshamov existence bound); here 

Hq(x) = x \ogq(q - 1) - x logq x - (1 - x) log g(l - x). 

is the g-ary entropy function. There also exist upper bounds which we do not 
discuss here. Again it is difficult to construct good codes explicitly. 

There are many interesting links between codes and lattices, cf.[Co/ SL]. 

1. Additive lattices (NAL) 

Construction. Let K be a number field and let OK be its ring of integers, 
[K : Q] = N = s + 2t where s is the number of real embeddings K —» R and 
t is the number of conjugate pairs of complex embeddings K c—> C. Together 
they form the standard embedding 

a : Rs
 x C' = RN 

which is a homomorphism of Q-algebras. Let L = a(0K). 
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