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On the Many Body Problem in Quantum Mechanics 

Avy Soffer* 

Section 1. Introduction 

The aim of these lectures is to describe some of the modern mathemat

ical techniques of iV-body Scattering and with particular mention of their 

relations to other fields of analysis. 

Consider a system of N quantum particles moving in R n , interacting with 

each other via the pair potentials Va\ the Hamiltonian (with center of mass 

removed) for such a system is given by 

H = - A + E 
i<3 

Vijixi-xj) on L 2(JT A ' ~ n ) . 

Here 1 < i, j < N, x{ 6 R n . - A is the Laplacian on L2(Rn A " n ) with metric 

x >y = 

N 

=1 

¿=1 
rriiXi • yi ; mi > 0 . 

The rrii are the masses of the particles. The main problem of scattering theory 

is to describe the spectral properties of H and find the asymptotic behavior 

of e~tHtcp(p for (p 6 L 2 , as t —> ±oo . 

There are two reasons for that: one, the behavior is much simpler as 

t —• ±oo . Secondly it determines the full properties of the system. Since the 
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sum i 
<j 

V{j does not vanish as \x\ —> oo in certain directions, the perturbation 

of —A is not negligible at infinity. The spectral properties and asymptotic 

behavior of H are therefore radically different than that of —A. 

This is the generic multichannel problem. There are many different 

asymptotic behaviors possible, depending on the choice of <p. Thus the main 

theorem can be phrased as: given <p £ L 2 ( R n ) , find hamiltonians Ha and 

Functions cp a= , s.t 

e-iHtp — E 
a 

e~iHat<PÌ « 0 as t —> ±00 . 

Accepting the physicist's dogma that every state of the system is described 

asymptotically in terms of particles (or bound clusters of particles) we con

clude that the only possible Ha are the subhamiltonians of the system: 

tia = H — Ia 

I a = E 
(iJ)Ca 

Vij(Xi ~ Xj) 

and a stands for arbitrary disjoint cluster decomposition of { 1 , 2 , . . . , N}. 

Ia is called the intercluster interaction. The Hamiltonian that describes 

the bound clusters of a decomposition a, is denoted by Ha. Not much is known 

for Multichannel Non Linear Scattering; see however [Sof-We and cited ref.]. 

The approach to studying e~%Uii\) for large |£| is by first reducing the prob

lem via channel decoupling (or other methods) to the study of the localization 

in the phase space of e~tHiip. Then, we develop a theory of propagation in 

the phase space for H. The channel decoupling is achieved by constructing a 

partition of unity of the space, with two main properties: one, on the support 

of each member of the partition the motion e~lHiip is simple (= one channel) 

and can be described by one fixed hamiltonian. The second property is that 

the boundary of the partitions is localized in regions where we can prove that 

no propagation of e~~lHtip is possible there for large times; in this way we 

conclude that no switching back and forth between channels is possible as 

|<| —• 00 which implies the desired results. 

The first part, based on the construction of partitions of unity relies 

mainly on geometric analysis combined with the kinematics of (freely) moving 
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particles. Different techniques are now known, each with its own importance, 
and I will describe some of the main constructions. The second part of the 
proof is analytic; it provides an approach to finding the asymptotic behavior 
of e~lHtip as \t\ —* oo, which is complementary to that of stationary phase. 
As I will describe below it replaces the (central) notion of oscillation by that 
of microlocal monotonicity. The distinctive feature of this approach allows 
the study of general pseudo differential operators H on equal footing with 
constant coefficient operators. 

The first proof of Asymptotic Completeness (AC) for TV-body systems 
along these lines was given in [Sig-Sofl]. Since then, different proofs were 
developed, with new useful implications [Deri, Kit, Gr, Ta] (see also [En2, 
Ger2-3]). Further developments concentrated on the long range problem. The 
three body case was first solved by Enss [En2]. (See also [Sig-Sof3].) Local 
decay and minimal and maximal velocity bounds were proved for JV-body 
hamiltonian, including ones with time dependent potentials in [Sig-Sof2]. This 
approach is further utilized in [Sk, FrL, Ger2 , Ger-Sig, H-Sk]. A method 
of dealing with the problem of AC for long range many body scattering is 
developed in [Sig-Sof4,5]; the case of N = 4 is solved there. 

A final comment; the phase space approach to JV-body scattering origi
nated with the fundamental works of Enss [Enl,2]. A comprehensive descrip
tion of the Enss method can be found in [Pe], including applications to many 
problems in spectral theory. References of many of by now classical results, 
including the works of Mourre, until about 1983 can be found in [CFKS]. We 
refer the reader to this book also as the basic reference used here on spectral 
and scattering theory. 

Section 2. Microlocal Propagation Theory 

Let H be a self adjoint operator on L2(Rn) arising from the quantization 
of a classical Hamiltonian h. By solving the Hamilton-Jacoby equations for h 
it makes sense to talk about the classical trajectories (or bi-characteristics) of 
h (or H). As t —> ±oo the (unbounded) trajectories concentrate, in general, 
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in a certain set of the phase space. 

DEFINITION 2.1. A bounded p.d.o. j with symbol homogeneous of degree 
0 in x is said to be supported away from the propagation set (at energy E) of 
H if the following estimate holds 

±00 
[ 
[ 

± 1 

= a 
(x) 1/2 je-tHtiP\\2dt< e l ic l i 2 for all tP = En(H)rp. 

Here (x)2 = 1 + ar, En(H) is the spectral projection of H with ft any 
sufficiently small interval containing E. 

Our aim is to identify the (conical) set PSE of the phase space, with the 
property that any j is supported away from the propagation set in the sense 
of the above definition if and only if it is supported away from PSE- We can 
therefore think of PSE as the propagation set of H at energy E. 

The main tool to proving that a given conical set K is away from the 
propagation set PSE will be to prove (microlocal) monotonicity of the flow 
generated by H in K. 

The claim is that the classical flow generated by H is moving out of any 
such K monotonically in for large t. By finding a lower bound for this 
monotone flow in K we can then absorb the effects of quantization and other 
potential perturbations of H. 

I chose to describe the above approach first when applied to H = — A, and 
along the way prove some known and new smoothing estimates for —A. The 
proofs are easy but allow the introduction of some of the other fundamental 
notions and arguments repeatedly used later. 

DEFINITION 2.2. The Heisenberg derivative of an operator family F(t), 

DF(t), w.r.t. to H is defined by 

DF (t) = i [H,F] = + dF 
dt . 

DEFINITION 2.3. A bounded family of linear operators F(t) on L2(Rn) is 
called a propagation observable for H if its Heisenberg derivative is positive -

112 


