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Inverse boundary value problems and applications 

Gunther Uhlmann* 

0. Introduction 
The main purpose of these lecture notes, which are a revised and ex

panded version of the survey paper [S-U V ] , is to give an overview of the 
mathematical developments in the last few years in inverse boundary value 
problems. In these problems one attempts to discover internal properties of 
a b o d y by making measurements at the boundary. W e concentrate mainly in 
the problem of determining the conductivity of a b o d y from measurements 
of voltage potentials and corresponding current fluxes at the boundary. This 
problem which is often referred to as Electrical Impedance Tomography arose 
in geophysics from attempts to determine the composit ion of the earth. More 
recently it has been proposed as a potentially valuable diagnostic tool for 
the medical sciences. The methods developed to study this problem have 
lead to new results in inverse scattering and inverse spectral problems. W e 
also give an account of some of these developments in these notes. 

1. Electrical impedance tomography; the isotropic case. 
In this section we formulate the inverse conductivity problem and a 

similar problem for the Schrodinger equation at zero energy. 
Let C R n n > 2, be a smooth bounded domain. If the conductivity of 

Q is independent of direction (isotropic case) it is represented by a positive 
function, which we assume in C 1 , 1 ( Q ) , with a positive lower bound. If we 
assume that there are no sources or sinks of current in fi, the conductivity 
equation for the potential u in fi is 

( l . i ) L^u = div (yVu) = 0 in fî. 

If / represents the induced potential on the boundary (assume / € H* (9f2)), 
u € H1 (Cl) solves the Dirichlet problem 

(1.2) L~u = 0 in Q 
L~u = 0L~u = 
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The Dirichlet to Neumann map is then defined by 

(1.3) A 7 ( / ) = 7 
du 

du 

where u is the solution of (1.2) and u is the unit outer normal to the bound
ary. T h e map 

Lau = 0 in Ct Lau = 0 in CtLau = 0 

is selfadjoint and is often called the voltage to current map because 7 ^ 
measures the current flux at the boundary. 

The inverse conductivity problem consists of the study of various prop
erties of the map 

(1.4) 7 - t A 7 . 

These properties include the injectivity, range, and continuity of the map and 
its inverse (when an inverse exists). From the point of view of applications, 
an even more important problem is to give a method to reconstruct 7 (o r at 
least to deduce as much information as possible about 7) from A 7 . 

A closely related problem is to consider instead of the conductivity 
equation, the Schrodinger equation at zero energy 

(1.5) Lq = A - q 

where q € L°° ( f t ) . 
If 0 is not an eigenvalue of La, we can solve the Dirichlet problem 

(1.6) Lau = 0 in Ct 

u\oa = f 

and define the Dirichlet to Neumann map by 

(1.7) A , ( / ) 
du 
du 

where u is the solution of (1.6) . W e want to study the map 

(1.8) 5 A 

g - ^ A g . ^ A g 

A 7 and Aq are related in the following way: If it is a solution of (1.1) then 

1 
w = 7 2 ?x 
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is a solution of Lqw = 0 with q = 
A v / 7 
Av/7 

It is a straightforward computat ion 

to see that 

(1.9) A . = 7 » A 7 7 2 
1 

2 7 

Av/7 

#77 

Thus if we know A 7 , 7 | a n and §^|an we can determine Aq. In the next 

section we shall see that A 7 determines 7 |an and §J|an, so that knowledge 

of A 7 determines Aq. 

2 . Results at the boundary 
Kohn and Vogelius ( [K-V, I]) proved that if 7 € C°°(Cl) one can deter

mine dv3 V j . 

Theorem 2 . 1 . Let n(i = 1,2) be in L°°(Q) with a positive lower bound. 

Let XQ € dCl and let B be a neighborhood of XQ relative to Q. Suppose that 

7 i € C ° ° ( £ ) , » = 1,2 

and 
A 7 1 ( / ) = A 7 2 ( / ) V / € F * ( Ö O ) Q7i(*o) with 

supp f C B fi dÇi, then 

d 

dx 
Q 7 i ( * o ) 

d 

dx' 

Q7i(*o) 

where 

dx 
a denotes 

Ô 

dxi 
a i ... 

d 

dxn 

Q7i(*o) 

Sketch of proof. 
Kohn and Vogelius proved this result by cleverly choosing boundary 

data. W e outline here a different approach taken in [S-U, I] which makes use 
of the fact that A 7 is a pseudodifferential operator of order 1. This means 
that, in local coordinates near #0 € dCl which we denote by x\ and for / 
supported near XQ, 

(2.2) A 7 / ( z ' ) = 
A7/(z') = 

m A7/(z') = 0 0 € d 

XJx',n is the full symbol of A 7 and has an asymptotic expansion for large 
f 

[2.3; A7/(z') = 

A7/(z') = 

A7/(z') =A7/(z') = 

155 



G. ULHMANN 

with A 7 homogeneous of degree j in W e have A 7

 } ( x ' = 7 |dii0c')l£'l 

and it was proven in [S-U, I] that A i / ' ( # ' , f ' ) -determines inductively '(#', f') -
'(#', f') - dft 

(For a simpler proof of this see the paper [L-U] and also the sketch in section 
9 of this paper.) 

The previous result implies the injectivity of $ at real-analytic conduc
tivities. Kohn and Vogelius extended this result further to cover piecewise 
real-analytic conductivities (JK-V, II]). 

Sylvester and Uhlmann ([S-U I]) used the proof of Theorem 2.1 outlined 
above to give continuous dependence estimates at the boundary. 

Theorem 2 .4 . Let ji, i = 1,2 be in L°°(Q) with a positive lower bound. 
Then 

(a) A 7 l - A 7 2 
2 » 2 

C Ti - 7 2 '(#', f') -

If 7 i , 72 are continuous, then 

|7i - 72 L°°(dsi) < Ci A 7 l - A 7 2 '(#', f') -

(b) If 7i ,72 are Lipschitz continuous then 

Bi = A 7 . - 7,-Ai satisfy 

\Bx-B2 hi C2 7i ~ 72 7i ~ 72 

and ||7! - 72||ivi.~(ön) + II¿(71 ~ 72)|U~(an) 

< c 3 
Bi — B2 i 1 

2>2 

A 7 1 - A 7 2 
2» 2 

On the operators we use the operator norm. C\ depends only on Q and 
the lower bound of the 7 t ' s . C21C3 depends only on Q and the j^s are 
normalized to have Lipschitz norm less than or equal to one. 

3 . Linearization at constants; Calderón's approach 
Calderón formulated the inverse conductivity problem in a different way. 

He considered the Dirichlet integral associated to the solution of (1.2) 

3.1 7i ~ 72 

f 
r | v « | 2 , 

Q1(f) measures the power necessary to maintain the potential / on the 
boundary. 
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