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SEMICLASSICAL SPECTRAL ASYMPTOTICS 

BY VICTOR IVRII 

0. Introduction 

The problem of the spectral asymptotics, in particular the problem of 
asymptotic distribution of eigenvalues is one of the central problems of the 
spectral theory of partial differential operators. It is also very important for 
the general theory of partial differential operators. Apart from applications 
in the quantum mechanics, radiophysics, continuum media mechanics (elas
ticity, hydrodynamics, theory of shells) etc, there are also applications to the 
mathematics itself and moreover there are deep though non-obvious links with 
differential geometry, dynamic systems theory and ergodic theory; even the 
term "spectral geometry" has arisen. All these circumstances make this topic 
very attractive for a mathematician. 

This problem originated in 1911 when H.Weyl published a paper devoted 
to eigenvalue asymptotics for the Laplace operator in a bounded domain with 
a regular boundary. After this article there was published a huge number of 
papers devoted to the spectral asymptotics and numerous prominent mathe
maticians were among their authors. The theory was developed in two direc
tions: first of all this theory was extended and there were considered more 
and more general operators and boundary conditions as well as geometrical 
domains on which these operators were given; on the other hand the theory 
was improved and more and more accurate remainder estimates were derived. 
Namely in the later way the links with differential geometry, dynamic systems 
theory and ergodic theory appeared. Even the theory of eigenvalue asymptotics 
for the Laplace (or Laplace-Beltrami) operator has a long, dramatic and yet 
non-finished history. At a certain moment apart of asymptotics with respect 
to the spectral parameter there appeared asymptotics with respect to other 
parameters; the most important among them are (in my opinion) semiclassical 
asymptotics, i.e. asymptotics with respect to the small parameter h (Planck 
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constant in physics) tending to +0. For a long time these asymptotics were in 
the shadow: most attention was paid to the eigenvalue asymptotics for oper
ators on compact manifolds (with or without a boundary); the results which 
had been obtained here then were proved again for operators in Rd such as the 
Schrodinger operator — h2A + V(x) with fixed h > 0 and with V(x) —• +00 as 
|x| —* 00; less attention was paid to semiclassical asymptotics (i.e. asymptotics 
of eigenvalues less than some fixed level A as h —• +0); moreover the asymp
totics of the small negative eigenvalues were considered in the case of fixed h 
and V(x) decreasing at infinity as | x | 2 m with m G (—1,0); under reasonable 
conditions in this case the discrete spectrum of an operator has an accumula
tion point —0 and the essential spectrum coincides with [0,+00). The result 
of the development of the theory described above was that at a certain mo
ment there existed four parallel (though not equally developed) theories and 
the statements in each of them had to be proved separately. However now this 
plurality has been finished (at least in my papers) because all the other results 
are easily derived from the local semiclassical spectral asymptotics (LSSA in 
what follows), which are the main object of these lectures All other results are 
obtained as their applications. 

In his papers H.Weyl applied the variational method (Dirichlet-Neumann 
bracketing) invented by himself; later this method was improved in various di
rections by many mathematicians. Other methods also appeared later and 
I would like to mention only the method of a hyperbolic operator due to 
B.M.Levitan and Avvakumovic1^. All the asymptotics with the most accu
rate remainder estimates were obtained by this method. It is based on the fact 
that the fundamental solution to the Cauchy problem (or the initial-boundary 
value problem) u(x,x,t) for the operator Dt — A is the Schwartz' kernel of the 
operator expitA (where Dt = — idt, etc) and it is connected with the eigenvalue 
counting function of an operator A by the formula 

(0.1) u(x,x,t)dx = e i t A dxN(X); 

in the case of a matrix operator A u(x,y,t) is a matrix-valued function and 
in the left-hand expression it should be replaced by its trace. Here and below 
N(X) is the number of eigenvalues of A less than A (and in this place we consider 
only operators semi-bounded from below with purely discrete spectra). Then by 
means of the inverse Fourier transform we can recover N(X) provided we have 
constructed ?x(x,y, t) by means of the methods of theory of partial differential 
operators. However, in fact we are never able (excluding some very special 

i) This method is a special case of Tauberian methods due to T.Carleman; resolvent 
method, method of complex power and method of heat equation are other Tauberian meth
ods. The method of the almost spectral projector due to M.Shubin and V.Tulovskii lies 
between variational and Tauberian methods. 
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and rare cases when all this machinery is not necessary) to construct u(x, y, t) 
precisely and for all the values t G R. Usually (now we assume that A is 
an elliptic first-order pseudo-differential operator) the fundamental solution is 
constructed approximately (modulo smooth functions) for t belonging to some 
interval [—T,T] with T > 0. As a consequence we obtain modulo 0(\~K) with 
any arbitrarily chosen K an expression for 

(0.2) Pt xT(t) u(x,x,t)dx = XT(T - X)dxN(X) 

where x is a fixed smooth function supported in [—1,1], XT(£) = X t 
T and a 

hat as well as Ft-+T mean the Fourier transform. Then if we know the left-
hand expression, using the Tauberian theorem due to Hormander we are able 
to recover approximately N(X) by the formula 

(0.3) N(X) = 
A 

—oo 
(Ft^TXT(t)a)(r))dT + 0(Xd-1) 

where d is the dimension of the domain, 

(0.4) f(t) u(x,x,t)dx 

and the explicit construction of u(x,x,t) in this situation yields the formula 

(0.5) N(X) = c0Xd + O(Xd-1) 

with the leading coefficient 

(0.6) co = (27r)-d 

a(*,0<l 
dxd£, 

where a(x,£) is a principal symbol of A. 
We see that the crucial step in this approach is the construction of the 

fundamental solution. This construction by means of Fourier integral opera
tors2) is standard and well-known now, provided we consider a scalar operator 
for an operator with constant multiplicities of the eigenvalues of the principal 
symbol and we construct u(x,y,t) at the compact K contained in the interior 
of our domain X (and T depends on the distance between K and dX). If one 
of these assumptions is violated then the construction is more sophisticated 
and possible only under some very restrictive conditions. In the presence of a 
boundary (but only in the case of the constant multiplicities of the eigenval
ues of the principal symbol) this construction was realized in certain papers 
due to R.Seeley, D.VasiPev, R.Melrose. However, it is possible to avoid all 
the troubles by means of another approach suggested by V.Ivrii[4] (see also 
L.Hormander [3]) based on the investigation of the propagation of singularities 

2) This construction due to L.Hormander played a very important and stimulating role 
in the development of Fourier integral operators theory. 
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for u(x,y,t) and construction of an "approximation" (in a rather exotic sense) 
for this distribution leading to an approximation in the reasonable sense for 
a(t) for \t\ < T with appropriate T > 0. For /i-pseudo-differential operators 
which are the main subject of this article this approach is essentially more 
simple and transparent because there is a selected parameter h. We'll discuss 
this case below. We'll be able to prove in this way the asymptotics (0.3) for an 
arbitrary self-adjoint ra-th order elliptic operator with m > 0 and the spectral 
parameter A m now on a compact manifold without or with a boundary (in the 
former case the boundary conditions are also supposed to be elliptic), scalar 
or matrix, semi-bounded from below or non-semi-bounded at all (in this case 
iV(A) is replaced by iV ±(A) which is a number of eigenvalues lying between 0 
and ± A m ) ; the formula for co should be changed if it is necessary. 

At the same time the two-terms asymptotics 

(0.7) N(X) = c0Xd + ciA**-1 + oiX*-1) 

suggested by H.Weyl (who also gave a formula for ci) fails to be true unless 
some additional condition is fulfilled. It is certainly wrong for d = 1 and for the 
Laplace-Beltrami operator on the sphere Sd of any dimension (this is due to 
the high multiplicities of its eigenvalues). Moreover, this asymptotics remains 
wrong in the case when this Laplace-Beltrami operator is perturbed by a poten
tial or even by a symmetric first-order operator with small coefficients; in this 
case all the eigenvalues of high multiplicities will generate narrow eigenvalue 
clusters separated by lacunae. On the other hand under some conditions of the 
global nature the asymptotics (0.7) is valid. For a scalar operator on a compact 
manifold without a boundary this condition is "The measure of the {set of all 
the points of the cotangent bundle periodic with respect to the Hamiltonian 
How generated by the principal symbol } equals to 0" 3). This condition is 
more complicated for matrix operators. For a scalar second-order operator on 
a compact manifold with a boundary one needs to consider only trajectories 
transversal to the boundary and reflecting according to the geometrical optics 
law. Though there are some points of the cotangent bundle through which 
such infinitely long trajectory doesn't pass, but the measure of these dead-end 
points vanishes and we do not have to take them into account. For higher-
order operators as well as for matrix operators the trajectories reflected from 
the boundary can branch and in this case it is necessary to follow every branch. 
This makes the situation much more complicated and the following additional 
condition (which isn't automatically fulfilled now) appears "the measure of the 
{set of all the dead-end points} equals to 0". 

Let us clarify for the scalar first-order operator on a manifold without 
boundary a link between asymptotics (0.7) and periodic Hamiltonian trajec-

3) This condition appeared first in the papers of J.J.Duistermaat and V.Guillemin. 
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