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A SHORT PROOF OF THE ALBERT-BRAUER-HASSE-NOETHER 
THEOREM 

Werner Hürlimann * 

We present a short proof of the Albert-Brauer-Hasse-Noether theorem on the Brauer 
group of a global field. The connection between Galois cohomology and algebraic tori 
theory is emphasized. Let K/k be a finite Galois extension of arbitrary fields with 
group G, then the relative Brauer group is Br(K/kJsH2(G,K*)sH(G,T1K)), where T1 
is the algebraic k-torus associated to the augmentation ideal IG of G. When k is a 
global field, we use fundamental facts from algebraic tori theory, Tate-Nakayama duality 
and modern versions of Grunwald-Wang's lemma to deduce the short exact sequence 

0 > Br(k) > 

v 
Broo > Q / z > o , 

where runs over the completions of k at all places v of k. 

* This work was done in great part at the Max-Planck-Institut für Mathematik in Bonn 
during a visit in 1982/83. Financial support from the Swiss National Foundation for 
scientific research is gratefully acknowledged. 
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1. Preliminaries. 

Since the seminal work by Manin(1970), the Brauer group plays an increasingly 
important role in Number Theory and especially in questions related to the existence of 
rational points on algebraic varieties (see Lang(1991), chap. X). A recent introduction 
to the Brauer group over a field is Kersten(1990). 

Besides the original proofs of the classical theorem of Albert-Brauer-Hasse-Noether, 
one finds proofs fitting the context of Diophantine Geometry in Shatz(1972) and 
Artin/Tate(1968). Thus the topic discussed in this note is well-known, only the 
conceptual presentation may be new. As pointed out by Serre(1962) for C1-fields, the 
Brauer group of fields may be computed via algebraic tori theory. This follows also 
from our Theorem 1 in the special case n=2. Indeed the relative Brauer group of a 
Galois extension with finite group G is 

Br(K/k) = H 2(G,K*) = H^G/T^K) ) , 

where T, is the algebraic k-torus associated to the augmentation ideal IQ of G. 
Let K/k be a finite Galois extension of arbitrary fields with group G. The category 

of finitely generated ZG-modules which are free as abelian groups is denoted by L G . 
The Z-dual of a ZG-module M is the ZG-module M°=Hom(M,Z). One knows that 
L G is in duality with the category T(K/k) of algebraic tori defined over k and split 
by K (see Borel(1969) for example). A k-torus T e T(K/k) corresponds in this duality 
to the dual X(T)° of the character module X(T)=Hom(T ,GJ . Under the K-rational 
points of T, one understands the group T(K)=Hom(X(T),K*). Two algebraic k-tori Tx 

and T 2 are called k-stably birationally equivalent if the k-varieties T^kA^k) and 
T 2 x k A s (k ) are k-birationally equivalent for appropriate choices of the integers r and 
s. For an arbitrary ZG-module M, one denotes by H n (G,M) the Tate cohomology 
groups defined for all integers n. A ZG-module M is called a flasque module if 
H 1 ( H , M ) = 0 for all subgroups H c G. It is shown in Colliot-Thelene/Sansuc(1977), 
Prop. 5 and 6, that there exists an invariant p , defined on T(K/k) with values in a 
"semigroup of similarity classes of flasque ZG-modules", and which characterizes the 
equivalence classes of k-stably birational equivalent tori. For a precise construction, the 
interested reader is referred to the mentioned work. 

Let us link now Galois cohomology with algebraic tori theory. From the standard free 
resolution of Z, one obtains the short exact sequences 

( i . i ) 
0 > X C T , ) : ^ > ZG > X(T 0 ) :=Z > 0, 

0 > X(T n + 1 ):=Ker(e„) > ® ZG-u(r) > X(T n ) > 0, n > 1, 
reG" 

where the u(r)=u(r 1 , . . . ,r n ), r{ e G, are symbols such that the s.u(r), s e G, form a Z-
basis of © ZG-u(r) . The action of G on u(r) is trivial and e„ is the ZG-
homomorphism defined by e n(u(r))=(d„. lu)(r), where d„., is the usual coboundary in 
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the cohomology theory of groups. To the ZG-module X(T n ) corresponds by duality 
the algebraic k-tori T n split by K. For n negative one defines T n by specifying its 
character module X(T n)=X(T. n)°. Then one applies the functor Hom(-,K*) to the 
sequence ( 1 . 1 ) . Since Hom(ZG,K*)=ZG®K* is G-induced, one has 
Hn(G,Hom(ZG,K*))=0 for all n. From the associated long exact sequences of 
cohomology one derives the following result (mentioned by Opolka in 
Schappacher/Scholz(1992), p . 18). 

THEOREM 1. For all finite Galois extensions of arbitrary fields Klk with group G 
and for all positive integers i, n such that 1 <i<n, one has Hn(G,K*) = Hl(G,Tn4(K)), 
and a similar result holds for negative integers. 

Recall now some standard facts from algebraic number theory. Assume in the 
following that K and k are global fields. By A K , J K and C K =J K /K*, one denotes 
respectively the adele ring of K, the idele group of K and the idele classgroup of 
K . F o r T e T ( K / k ) one defines T ( A K ) = Hom(X(T),JK) a n d 
T(C K )=T(A K ) /T(K)=Hom(X(T) ,C K ) . The set of all places v of k is denoted by P. 

The following result is the generalization of one of the main theorems in classfield 
theory, which states that the finite Galois extensions K/k build up a classformation 
with respect to the idele classgroup C K . 

THEOREM 2. (Tate-Nakayama duality) Let Klk be a finite Galois extension of 
global fields with group G. For every integer n and for any T e T(K/k), there is a 
(non-canonical) isomorphism Hn(G,T(CK)) = H2n(GX(T)). 

Proof. See the work of Tate and Nakayama or Ono(1963), 2.2.1. 

As a special case when T = G m , one gets H n (G ,C K )=H 2 n (G ,Z) , which is a main 
theorem in classfield theory. 

By application of the functor Hom(-,J K) to the sequences (1.1) and by passing to the 
long exact sequences of cohomology using that H n (G,Hom(ZG,J K ) )=0 for all n (since 
Hom(ZG,J K )=ZG®J K is G-induced!), one gets the analogue of Theorem 1. 

THEOREM 3. For all finite Galois extensions of global fields Klk with group G and 
for all positive integers i, n such that 1 < i < n, one has Hn(GJK)^Hl(G,Tn4(AK)). 

Finally for a torus T e T(K/k) one denotes by LLIn(T) the kernel of the natural map 
H n (G,T(K)) > H n (G,T(A K )) . The group III'CD, simply written 1U(T), is the so-called 
Shafarevich-Tate group of T. The cokernel of the map H ! (G,T(K)) > H ^ G / T ^ ) ) 
is denoted by ^ ( T ) . 
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2. Computation. 

Let us evaluate the Brauer group Br(k) of a global field k. Let K/k be a finite 
Ga lo i s ex t ens ion of g loba l fields with group G. By Theorem 1 one has 
H 2 ( G , K = H 1 ( G / T 1 C K ) ) and by Theorem 3 one has H 2 ( G , J K ) H 1 G , T 1 ( A K ) ) . By 
definition of the groups 111(0 and ^ ( O one gets the exact sequence 

(2.1) 0 > UICTj) > H 2(G,K*) > H 2 (G,J K ) > u(T1) > 0. 

The evaluation of the p-invariant of Tx yields p(T 1 )=p(I G )=0 (see Colliot-
Thelene/Sansuc(1977), prop. 5 and 6). From the same work, prop. 18, it follows that 
IIICT^ssO. On the other hand from the long exact sequence associated to the sequence 

1 > T , ( K ) > T ^ A K ) > T / Q ) > 1, 

one derives the exact sequence 

(2.2) 0 > ^ ( T , ) > H ^ C T / C K ) ) > U I 2 ^ ) > 0. 

By Tate-Nakayama duality, that is Theorem 2, one has 

H ^ C T ^ C K ) ) = H ^ C X C T , ) ) = H ^ G J G ) = H ° ( G , Z ) = Z/nZ, 

where n is the order of the group G. Moreover applying Theorems 1 and 3 one gets 

L U 2 ^ ) = Ker( H ^ C T ^ K ) ) > H ^ C T ^ A K ) ) ) 
= Ker( H 3(G,K*) > H 3 (G,J K ) ) 
= H 3(G,K*), 

the last equality following since H 3 (G,J K )=0 by classfield theory (see for example 
Neukirch(1969), III, (3.5) in the case of number fields, or Iyanaga(1975), chap. V, 
Theorem 1.4, in the general case). Furthermore the third cohomological group H 3(G,K*) 
is cyclic of order n/m where m = m K / k (depending on the extension K/k) is the least 
common multiple of the local degrees (see for example Cassels/Fr6hlich(1967), p . 199). 
Introduced in (2.2) these two results provide the equality 

(2.3) l i d , ) = Z /m K / k Z. 

Introduced in (2.1) together with UI(T,)=0 this generates a whole class of exact 
sequences whose members are 

(2.4) 0 > H 2(G,K*) > H 2 ( G J K ) > Z / m K / k Z > 0. 

This class defines a directed system of exact sequences of abelian groups with respect 
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