Astérisque

MORISLAV LASSAK Some remarks on the Pethő public key cryptosystem

Astérisque, tome 209 (1992), p. 257-264

http://www.numdam.org/item?id=AST_1992_209_257_0

© Société mathématique de France, 1992, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Some remarks on the Pethő public key cryptosystem

Miroslav Laššák, Bratislava

In [1] Pethő introduced a public key cryptosystem. In its definition (see below for more details) an essential role is played by a monic polynomial g(t)of degree n and a modulus M, which belong to the nonpublic part of this cryptosystem. The aim of this note is to show that if the greatest common divisor of the *n*th power of the constant term of g and M is too "small", then the cryptosystem can be broken in polynomial time. The crucial role in our cryptoanalysis is played by a system of congruences (9) whose solution can be found under the above mentioned condition.

1 Pethő public key cryptosystem

For the convenience of the reader, we describe in this section the main ingredients of the public key cryptosystem suggested by A. Pethő in [1].

Let $g(t) = t^n + g_{n-1}t^{n-1} + \cdots + g_1t + g_0 \in \mathbb{Z}[t]$, where \mathbb{Z} denotes the ring of integers and **G** the companion matrix of the polynomial g(t). Further, let $\mathbf{x}_i \in \mathbb{Z}^n$ for $i \ge 0$ be the sequence of vectors defined by

$$\mathbf{x}_{0} = (1, 0, \dots, 0)
 \mathbf{x}_{i+1} = \mathbf{x}_{i} \mathbf{G} \text{ for } i \ge 0.$$
 (1)

Given a finite subset \mathcal{N} of \mathcal{Z} , $\mathcal{A}_{\mathcal{N}}$ will denote the set of all finite words over \mathcal{N} satisfying the property that if $0 \in \mathcal{N}$ and l > 0 then $w_l \neq 0$. If l(w) = l + 1 denotes the length of the word $w = w_0 w_1 \dots w_l$, then $\mathcal{A}_{\mathcal{N}}^L$ will denote the set of all words of $\mathcal{A}_{\mathcal{N}}$ of length not exceeding L + 1.

DEFINITION 1.1 A pair $\{g(t), \mathcal{N}\}$ is called a weak number system if the map $T: \mathcal{A}_{\mathcal{N}} \to \mathcal{Z}^n$ defined by

$$T(w_0 \dots w_l) = w_0 \mathbf{x}_0 + \dots + w_l \mathbf{x}_l \tag{2}$$

is injective.

S. M. F. Astérisque 209** (1992) One sufficient condition for weak number systems is contained in the next result [1]:

PROPOSITION 1.1 If $|g_0| \ge 2$ and \mathcal{N} consists of pairwise incongruent integers modulo g_0 , then the pair $\{g(t), \mathcal{N}\}$ is a weak number system.

This weak number system enables us to construct a private key cryptosystem. To do this take $g(t) = t^n + g_{n-1}t^{n-1} + \cdots + g_1t + g_0 \in \mathbb{Z}[t]$ with $|g_0| \ge 2$ and a set \mathcal{N} of pairwise incongruent integers modulo g_0 .

For encryption of a plaintext $w = w_0 \dots w_r \in \mathcal{A}_N$ choose integers l_1, l_2, \dots, l_h with $l_1 + l_2 + \dots + l_h = r + 1$. Then cut the word w into subwords W_1, \dots, W_h of \mathcal{A}_N in such a way that $w = W_1 \dots W_h$ and $l(W_i) = l_i$. Then application of the map T gives the cryptogram $Y_1, \dots, Y_h \in \mathbb{Z}^n$, where $Y_i = T(W_i)$ for $i = 1, \dots, h$. The knowledge of the corresponding secret keys g(t) and \mathcal{N} may be used to decrypt the received message. For more details about the corresponding algorithm consult [1].

Unfortunately, this cryptosystem cannot be used as the public key cryptosystem, therefore Pethő suggested the following modification:

Let $\{g(t), \mathcal{N}\}$ be a weak number system constructed by proposition 1.1 such that $0 \in \mathcal{N}$.

Let the height m(w) of the word $w \in \mathcal{A}_{\mathcal{N}}$ be defined by

$$m(w) = \max\{|y_0|, \ldots, |y_{n-1}|\},\$$

where $T(w) = (y_0, \ldots, y_{n-1}) \in \mathbb{Z}^n$. Then take an integer M such that

$$M > 2\max\{m(w) : w \in \mathcal{A}_{\mathcal{N}}^{n+L}\}$$
(3)

and a regular matrix \mathbf{C} over \mathcal{Z}_M satisfying

$$\mathbf{CG} \neq \mathbf{GC} \text{ over } \mathcal{Z}_M.$$
 (4)

Finally, define the vectors $\hat{\mathbf{x}}_i$ for $i = 0, 1, \dots, L$ by

$$\widehat{\mathbf{x}}_i \equiv \mathbf{x}_{n+i} \mathbf{C} \pmod{M} \tag{5}$$

and the map $\widehat{T}: \mathcal{A}^L_{\mathcal{N}} \to \mathcal{Z}^n$ by

$$\widehat{T}(w_0 \dots w_l) = w_0 \widehat{\mathbf{x}}_0 + \dots + w_l \widehat{\mathbf{x}}_l \quad \text{for} \quad l \le L.$$
(6)

The public part of the Pethő public key cryptosystem consists of the chosen weak number system, \mathcal{N} and vectors $\hat{\mathbf{x}}_0, \hat{\mathbf{x}}_1, \ldots, \hat{\mathbf{x}}_L$. To encrypt a plaintext $w = w_0 \ldots w_i$ an analogous algorithm can be used, but based on $\hat{T}(w_0 \ldots w_i)$ instead on $T(w_0 \ldots w_i)$. Knowing the secret keys \mathbf{C}, M one can determine the matrix \mathbf{C}^{-1} over \mathcal{Z}_M . We have

$$\widehat{T}(w_0\dots w_l) = w_0\widehat{\mathbf{x}}_0 + \dots + w_l\widehat{\mathbf{x}}_l \equiv (w_0\mathbf{x}_n + \dots + w_l\mathbf{x}_{n+l})\mathbf{C} \pmod{M}$$

and consequently

$$(y_0,\ldots,y_{n-1})=T(\underbrace{0\ldots0}_n w_0\ldots w_l)\equiv \widehat{T}(w_0\ldots w_l)\mathbf{C}^{-1} \pmod{M}.$$
 (7)

Furthermore, using (3) we obtain

$$2|y_i| \leq 2m(\underbrace{0\ldots 0}_n w_0 \ldots w_l) < M,$$

which implies

 $|y_i| < M/2$ for $i = 0, 1, \dots, n-1$ (8)

and y_0, \ldots, y_{n-1} are uniquely determined. Using the algorithm for decryption (see [1]) we get $0 \ldots 0 w_0 \ldots w_l$ and then $w_0 \ldots w_l$.

This cryptosystem is correct in the sense that the plaintext may be uniquely determined from the encrypted text.

2 A possibility of decryption

We write $\mathbf{A} \equiv \mathbf{B} \pmod{m}$ or $\mathbf{A} \stackrel{(m)}{\equiv} \mathbf{B}$ for the matrices \mathbf{A}, \mathbf{B} congruent modulo m.

DEFINITION 2.1 The square matrices \mathbf{A}, \mathbf{B} of order n are called similar modulo m if there exist two square matrices \mathbf{P}, \mathbf{Q} of order n such that $\mathbf{PQ} \stackrel{(m)}{\equiv} \mathbf{QP} \stackrel{(m)}{\equiv} \mathbf{I}$ and $\mathbf{B} \equiv \mathbf{PAQ} \pmod{m}$. We write $\mathbf{A} \sim \mathbf{B} \pmod{m}$.

PROPOSITION 2.1 Let \mathbf{A}, \mathbf{B} be square matrices of order n and $\operatorname{char}(\mathbf{A}) = t^n + a_{n-1}t^{n-1} + \cdots + a_1t + a_0, \operatorname{char}(\mathbf{B}) = t^n + b_{n-1}t^{n-1} + \cdots + b_1t + b_0$ be their characteristic polynomials. If $\mathbf{A} \sim \mathbf{B} \pmod{m}$, then

$$a_i \equiv b_i \pmod{m}$$
 for $i = 0, 1, ..., n - 1$.

Now we return to the Pethő public key cryptosystem. Consider the following system of congruences

$$\widehat{\mathbf{x}}_i \equiv \widehat{\mathbf{x}}_{i-1} \mathbf{A} \pmod{M} \text{ for } i = 1, 2, \dots, L, \tag{9}$$

where **A** is a (unknown) matrix of order n and M, $\hat{\mathbf{x}}_0, \hat{\mathbf{x}}_1, \ldots, \hat{\mathbf{x}}_L$ are public keys.

It is not hard to see that the matrix $\mathbf{C}^{-1}\mathbf{G}\mathbf{C}$ is a solution of the system of congruences (9) for

$$\widehat{\mathbf{x}}_{i} \stackrel{(M)}{\equiv} \mathbf{x}_{n+i}\mathbf{C} = \mathbf{x}_{n+i-1}\mathbf{G}\mathbf{C}$$

$$\stackrel{(M)}{\equiv} \mathbf{x}_{n+i-1}\mathbf{C}\mathbf{C}^{-1}\mathbf{G}\mathbf{C} \stackrel{(M)}{\equiv} \widehat{\mathbf{x}}_{i-1}(\mathbf{C}^{-1}\mathbf{G}\mathbf{C}) \text{ for } i = 1, 2, \dots, L.$$

In the rest of the paper we shall find conditions under which it is possible to find M and a solution matrix \mathbf{A}_0 of the system (9). The following observations show that this is sufficient to break the Pethő cryptosystem in polynomial time. To see this note:

1. If $\mathbf{A}_0 \equiv \mathbf{C}^{-1}\mathbf{G}\mathbf{C} \pmod{M}$, then by definition 2.1 the matrices \mathbf{A}_0 and \mathbf{G} are similar modulo M. Therefore, if $\operatorname{char}(\mathbf{A}_0) = t^n + g'_{n-1}t^{n-1} + \cdots + g'_1t + g'_0$ is the characteristic polynomial of the matrix \mathbf{A}_0 , then by proposition 2.1 we have

$$g'_i \equiv g_i \pmod{M}.$$
 (10)

Furthermore, we have

$$M > 2|g_i| \cdot |w'| \ge 2|g_i|, \tag{11}$$

where w' is a nonzero element of \mathcal{N} , since $\mathbf{x}_n = (-g_0, \ldots, -g_{n-1})$. Consequently, $|g_i| < M/2$ for $i = 0, 1, \ldots, n-1$ and this together with (10) implies that the coefficients $g_0, g_1, \ldots, g_{n-1}$ of the polynomial g(t) are uniquely determined. Thus we can derive the polynomial g(t), the matrix \mathbf{G} and the vectors \mathbf{x}_i $(i = 0, 1, \ldots, n+L)$ from knowledge of M and \mathbf{A}_0 .

2. Let \mathbf{R}_0 be an arbitrary solution of the system of congruences

$$\widehat{\mathbf{x}}_i \mathbf{R} \equiv \mathbf{x}_{n+i} \pmod{M} \text{ for } i = 0, 1, \dots, L$$
 (12)

with an unknown matrix **R**. This system is solvable, because \mathbf{C}^{-1} solves it. But it is not necessary to find just the matrix \mathbf{C}^{-1} , because any solution matrix \mathbf{R}_0 can be used for determining y_0, \ldots, y_{n-1} since

$$\widehat{T}(w_0 \dots w_l) \mathbf{R}_0 = (w_0 \widehat{\mathbf{x}}_0 + \dots + w_l \widehat{\mathbf{x}}_l) \mathbf{R}_0$$

$$\stackrel{(M)}{\equiv} w_0 \mathbf{x}_n + \dots + w_l \mathbf{x}_{n+l}$$

$$= T(0 \dots 0 w_0 \dots w_l) = (y_0, \dots, y_{n-1})$$

Due to (8) the numbers y_0, \ldots, y_{n-1} are uniquely determined. Now we know all that is necessary for decryption. Applying the decryption algorithm to $(y_0, \ldots, y_{n-1}) = T(0 \ldots 0 w_0 \ldots w_l)$ we get $0 \ldots 0 w_0 \ldots w_l$ and consequently $w_0 \ldots w_l$.

Thus knowing M and the matrix \mathbf{A}_0 we are able to decrypt intercepted messages in polynomial time.