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MODULAR FORMS AND ALGEBRAIC K-THEORY 
A. J. Scholl 

In this paper, which follows closely the talk given at the conference, I will 
sketch an example of a non-trivial element of K2 of a certain threefold, whose 
existence is related to the vanishing of an incomplete X-function of a modular 
form at s = 1. To explain how this fits into a general picture, we begin with a 
simple account, for the non-specialist, of some of the conjectures (mostly due 
to Beilinson) which relate ranks of iiT-groups and orders of L-functions, sup­
plemented by examples coming from modular forms. The picture presented 
is in some respects wildly distorted; among the important topics which are 
given little mention are: 

(i) the connection between special values of L-functions and higher 
regulators, which is at the heart of the Beilinson conjectures; 

(ii) the conjectures of Birch and Swinnerton-Dyer, and their generali­
sation by Beilinson and Bloch; 

(iii) the theory of (mixed) motives, which underlies the constructions of 
the last section. 

But I hope that it may be of some use as a gentle introduction to the 
subject, and to prepare the reader for a more comprehensive account (see for 
example [9,17,18,21] and above all [1]). 

1. BEGINNINGS 

The story begins with Dirichlet's unit theorem: if F is a number field 
with ring of integers o^, then 

rk o*F = rt + r2 - 1 = o r d 5 = 0 (F{S) 

and there is the analytic class number formula, which at $ = 0 reads: 

CF(0) = 
hFRE 

wF (i) 

where (P(0) denotes the leading coefficient in the Taylor series of (F($) Z& 
s = 0. More generally, let S be a finite set of primes of F, and OP,S the ring 
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of S-integers of F. Then the S-unit theorem says 

rko> 5 = ri + r 2 - l + # S 

= ord 5 = 0 CF,S(S) 

where CF,S( 5) is the incomplete zeta function: 

CFAS) = 
P#s 

'( l-Np- 8 )-1 

and the analogue of (1) is the 5-class number formula. 
Borel found a generalisation of these results to the zeta function at arbitrary 

negative integers: 

Theorem. [5] Let I > 0 be an integer. Then K21OF is finite, and 

ikK2i+iOF = 
T\ + 7*2 / even 
T2 I odd 

= ord s =_/ (F(s). 

Moreover the leading coefficient CF(~0 2 5 ^Q^al, up to a non-zero rational 
factor, to a "higher regulator". 

Remarks: (i) Here KiOp are the higher if-groups of F, as defined by Quillen 
(see section 2). This is a natural generalisation of the unit theorem since 
K\OF = o*F. The fact that KIOF are finitely generated was proved by Quillen. 

(ii) The higher regulator is the determinant of a certain natural homomor-
phism 

K2i+iOF ® R - + R m S mi = oids=_i CF(s). 

(iii) The analogue of the 5-unit theorem for these higher -groups is un­
interesting; on the one hand, one has 

(2) KqoF,s 0 Q = KqoF ® Q = KqF (8) Q 

for every q > 1 (cf. section 2); on the other, the individual Euler factors in 
(F(S) have no poles at negative integer points, so 

ord 5 = _/(>(s) = °^8=-ICF,S(S) 

for any finite set S of primes and any / > 0. 
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2. K-THEORY 

For any scheme X there is a Grothendieck group KQX. It is defined as the 
abelian group generated by symbols [£], where £ runs over all isomorphism 
classes of vector bundles on X , with relations of the form 

[S] = [£'] + [S"\ 

for every exact sequence 0 —> £' —• £ —» £" —> 0. For a ring i? one can 
define if 0i? to be if 0Speci?, or (which amounts to the same thing) as the 
Grothendieck group of projective iZ-modules, with relations [M®N] = [M] + 
[N]. 

In a similar way one also has the group K'0X, generated by [£] for arbitrary 
coherent sheaves £, with relations from exact sequences of coherent sheaves. 

Quillen showed that KQX and K'0X are part of an infinite sequence of 
groups KQX, K'QX for q > 0, constructed as the higher homotopy groups 
7r9+i of certain spaces attached to X. For some of the different ways to define 
them, see [10,16,22]. 

Among the important properties of these groups are: 

(i) There are cup-products KPX x KQX —• KP+QX', 
(ii) For X regular (e.g. a smooth variety) K'QX = KQX; 

(iii) For Y C X a closed subscheme, there is a long exact sequence (the 
localisation sequence) 

••• - K'QY - K'QY -K'QY -K'QY -- y) K'^Y . . . 

'(iv) injects into i^iX, with equality if X = Spec i7* is the spectrum 
of a field. 

(v) The K-groups of finite fields are finite (of known order). 

For a number field F the localisation sequence gives 

> KQ0F -* KQ0F,S -> [J Kq^Op/p Kq^Op -* ... 

which together with (v) gives (2). 

3. L-FUNCTIONS OF AN ALGEBRAIC VARIETY 

Consider a smooth, projective algebraic variety X over Q. Since any va­
riety over a number field may be regarded—by restriction of scalars a la 
Grothendieck—as a variety over Q (in general, not geometrically connected) 
the restriction to ground field Q is not serious. 
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For each integer i in the range 0 < i < 2dimX there is an L-function 
L{hl(X), s), which is an Euler product: 

L(hi(X),s) = l[pM(p-r1. 
P 

The polynomials Pjfi(t) here are defined as follows. Pick a prime £ ̂  p, and 
let H\(X) be the ^-adic cohomology of X/Q, which is a finite-dimensional 
Q^-vector space on which Gal(Q/Q) acts continuously. Let Ip C Dp C 
Gal(Q/Q) be inertia and decomposition subgroups at a prime of Q over p, 
and Frobp = <j)~l 6 Dp/Ip the inverse of the Frobenius substitution. Then 

pW(t) = det(l - tFrobp I H\(Xy>) 

is the characteristic polynomial of Frobp (the "geometric Frobenius") acting 
on the inertia invariants. 

If X has a good reduction Xp at then Pjfi has integer coefficients, and 
does not depend on by Deligne's proof of the Weil conjectures [6]; moreover 
in this case the zeroes of P^(t) all have absolute value p~1/2. For general 
p it is conjectured that P^\t) has integer coefficients, is independent of 
and that its roots have absolute values p~^2 for various integers j < i. This 
is known in very few cases (curves, a class of surfaces and some sporadic 
higher-dimensional examples). For the conjectures that follow to make sense, 
we must assume these local properties are true. It is then conjectured that 
L(hl(X), s)—which is analytic and non-zero for 9ft(s) > i/2 + 1, by the Euler 
product—has a meromorphic continuation satisfying a functional equation 
for the substitution s \—• 1 + i — s. 

4. GENERAL CONJECTURES 

The part of Beilinson's conjecture related to orders of L-functions can now 
be approximately stated: 

Let m be an integer satisfying m < Write q = 1 + i — 2m. Then the 
order of L(hl(X), s) at s = m is equal to the dimension of a certain subspace 
of Kq(X)z ® Q. More precisely, for q > 0 

dimKqX/z ® Q = £ o r d 5 = m L ( / i i ( X ) , s ) . 
(z,m) 

\-\-i—2m—q 

Remarks: (i) The group KqX/z is defined as follows. Let X be a regular 
model for X over Z; in other words, X is a regular scheme, proper over 
Spec Z, such that X ® Q = X. Then 

KqX/z = I m a g e d * KqX). 
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