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SOME REMARKS ON ELLIPTIC CURVES 
OVER FUNCTION FIELDS 

Tetsuji SHIODA 

In my lecture at the Journées Arithmétiques in Geneva (entitled "Mordell-
Weil lattices and sphere packings"), I talked on 
1) a brief survey on lattices and sphere packings, 
2) basic results on Mordell-Weil lattices, and 
3) application to sphere packings via supersingular surfaces. 
For these topics, the following references are available: 1) [CS,Ch.l], 2) [S3], 
[S4] and 3) [E], [Oe], [S5]. 

In this note, instead of reporting on these, I would like to treat some re
lated topics on elliptic curves over a function field, especially some results on 
the L-function of an elliptic curve over a function field with a finite constant 
field. Most of them must be known to experts, but the approach based on 
surface theory and Mordell-Weil lattices seems to provide a natural setting 
for this subject (cf. [T2],[G],[Mc]). In particular, this method enables one to 
write down explicit examples of such an X-function in some nontrivial cases. 

The contents of this paper are as follows: 
1. Elliptic surfaces 
2. The i-function of an elliptic curve 
3. Supersingular case 
4. Rational elliptic surfaces 

The present work has been done during my visit to Max-Planck-Institut, 
Bonn and the University of Geneva. I would like to thank Professor F. Hirze-
bruch and Professor D. Coray for their kind invitation. 

S. M. F. 
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1 Ell iptic surfaces 

Let us review first some basic results on elliptic surfaces, fixing the notation. 
Let k be an algebraically closed field of arbitrary characteristic and let K/k 
be a function field of one variable over fc, i.e., K = k(C) for some smooth 
projective curve C over k. Let E/K be an elliptic curve with a if-rational 
point O, and let / : S —• C denote the elliptic surface associated with E/K 
(the Kodaira-Neron model). The elliptic curve E is recovered from / as its 
generic fibre and, as is well known, the If-rational points of E can be identified 
with the sections of / ; for each P £ E(K), (P) denotes the image curve in S 
of the section P : C —• S. We always assume the condition (*) that / has 
at least one singular fibre. 

Now let N = NS(5) be the Neron-Severi group of 5; it is a free module 
of finite rank p (=the Picard number of £ ) , which is an (indefinite) integral 
lattice with respect to the intersection pairing. We denote by T or L the 
trivial or essential sublattice of JV; by definition, T is the sublattice generated 
by the zero-section (O), a fibre and all components of reducible fibres of / , 
and L is the orthogonal complement of T in N. In particular, we have 

(1.1) N (8) Q = (T ® Q) © (L (8) Q) 

and 

(1.2) p = rkT + r k i . 

Further we have 

(1.3) rkT = 2 + E K - i ) 
vec 

where mv is the number of irreducible components of the fibre / - 1 ( v ) , and 
rkX is equal to the Mordell-Weil rank of E/K: 

(1.4) r :=ikL = ikE(K). 

Actually there is a natural isomorphism 

(1.5) L ® Q ~ E(K) (8) Q, 

which takes the intersection pairing on L to the height pairing on the Mordell-
Weil group (up to the sign change); indeed this is essentially how we defined 
the structure of Mordell-Weil lattices (see [S4] ) . 

Next we consider the cycle map 

(1.6) 7 : N - ^ H = H2(S,Q,(l)) 
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where H stands for the Z-adic cohomology group with a fixed prime number 
/ ^ char(fc) (cf. [Tl]). It is injective and takes the intersection pairing of N 
into the cup-product pairing in H. Let us denote by Trans(S) the orthogonal 
complement of Im(7) in H, whose elements are called transcendental cycles 
on S, and by W the orthogonal complement of y(T) in H. The space W 
corresponds to what Weil called the essential part in the second homology of 
S (cf. his comments to the paper [1967a] in [W, III]). Then we have 

(1.7) H ~ (N ® Qi) © Trans(S) ~ (T ® Q,) © W 

and 

(1.8) W ~ (L ® Q/) © Trans(S) 

The Lefschetz number of 5 is defined as 

(1.9) A := dim Trans(5) =b2-p (6 2 = dim H2(S)) 

which is known to be a birational invariant of 5. 

Proposition 1 The dimension w of the vector space W is given by 

(1.10) w = r + \ = b2-TkT. 

//char(fc) ^ 2,3, then 

(1.11) w = 4g-A + fi + 2a 

where g is the genus of C (or of K) and \i (resp. a) is the number of singular 
fibres of multiplicative (resp. additive) type. 

Proof The first part is immediate from (1.7) and (1.8). The second 
part is also well-known (cf.[R],[Sl]). Let us briefly recall the idea of the proof. 
From the standard facts in surface theory, we have 

b2 = c2 + 2bi - 2 (c 2 = Euler number of S) 

where &i = 2g since we are assuming the condition (*). On the other hand, 
we have the following formula for char(fc) ^ 2,3: 

(1.12) c2 = Yjev (^v = Euler number of / _ 1 ( t ; ) ) 
V 

(cf. [K],[Ogg],[Ogu]). Then, by (1.9) and (1.3), we have 

w = 4g - 4 + £ ( e v - mv + 1). 
V 
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It remains to check that 

ev = mv or mv + 1 

according as the fibre f-1 (v) is of multiplicative or additive type, which can 
be done using the classification of singular fibres([K],[N],[T3]). q.e.d. 

It may be worthwhile to mention the following direct consequence. Simply 
note that we have A > 0 in general and A > 2pg (pg: geometric genus of S) in 
characteristic 0. 

Corollary 2 //char(fc) ^ 2,3, then 

(1.13). r < w = 4g - 4 + \L + 2a. 

Corollary 3 Assume char(fc) = 0. Then 

(1.14) P g < l w = 2g-2 + ̂  + a 

(1.15) c 2 = 12(pg -g + l)< 6(2g -2 + fi + 2a) 

and 

(1.13'). r < 4g - 4 + fi + 2a - 2pg. 

Remark, (a) In case char(fc) = 2 or 3, (1.10) is still valid, but (1.11) 
should be modified by adding an extra term caused by wild ramifications (cf. 
[Ogg],[R],[Sa]). In other words, each ev in (1.12) should be replaced by ev + SV 

with a well-defined non-negative integer 6V so that the right hand side of (1.11) 
should have the term f>v 
(b) The idea behind equality of expressions in (1.10) and (1.11) was first 
used by Igusa [I] to define a correct Betti number 62 of an algebraic surface, 
and later it was formulated in a more general situation as the so-called Ogg-
Shafarevich formula (cf. [R]). 
(c) The above (1.14) or its equivalent (1.15) seems to have been proved by 
many authors again and again, though it was explicitly stated in [Sl,Cor.2.7] 
in 1972. In particular, (1.15) is sometimes called Szpiro's conjecture (cf. 
[Sz,p.l0]); note that we make no assumption of semi-stability (a = 0) in the 
above argument. 
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