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Semiclassical expansions of the 
thermodynamic limit for a 

Schrddinger equation 
I. The one well case 

by B.Helffer and JSjostrand 

§1 Presentation of the problem : 

One of the motivations of the study presented here is a statistical model 

introduced by M.Kac [Ka] 2 and called the exponential bidimensional model. 

This model was supposed to present phase transition. Let us just recall 

here (see [Ka]2 or [Br-He] for details) that after some reductions M.Kac 

arrive to the question of studying the spectral properties of the following 

operator: 

(1.1) K ( h ) : = 

= exp[-V(m)(x)/2].exp[h22 :m={d2/dx2k].exp[-V(m)(x)/2] 

with1 : 

(1.2) V(m)(x) = ( l / 4 ) 2 k ^ x k 2 - Z ^ l o g c M V ^ (xk+xk + 1)). 

1 In fact, the operator which appears in Kac is exp(-mh/2)Km(h). It is easier w.l.o.g. in 
this article to work with this modified Kac operator. 
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The parameter v is here the inverse of the temperature and h is a 

semi-classical parameter. The two questions of interest are in this context: 

(1.3) If |i, (m;h,v) is the largest eigenvalue of the Kac's operator, what is  

the behavior as a function of v and h of the thermodynamic quantity : 

Limm_w ( -Log \i{ (m;h,v) /m). 

(1.4) If n,2(m;h,v) is the second eigenvalue (which is < \i{ (m;h,v) by 

standard results), can we study the quantity : 

Limm-+oo ( |i2(m;h,v) (m;h,v)). 

From discussions with specialists in statistical mechanics (with T.Spencer 

for example), we get the impression that this problem is probably well 

understood and that according to the value of v with respect to a critical 

value vc the answer to (1.4) will be that the limit will be <l for v<vc 

and will be 1 for v >vc. This is a sign of a transition of phase. However, we 

do not have a precise reference for that and at least the problem of 

analyzing in detail the behavior of the different thermodynamic quantities 

near the critical value v c seems to remain open. 

In his interesting course in Brandeis [Ka]2, M. Kac explains, at least 

heuristically, how to compare (in the semi-classical context) the operator 

Km(h) to the exponential of (minus) a Schrbdinger operator. The validity of 

this approximation (for m fixed) has been studied more carefully in [He-Br] 

and [He] using some results of [He-Sj]j 4. 

If we admit this approximation, we shall find the following problems for 

the Schrbdinger equation: 

(1.5) Pm(h) = „ m , 2 - 2 . 2 w(m), x 
- 2 k = , h 8 / 3 x k +V (x) . 
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SEMICLASSICAL EXPANSIONS 

(1.6) If X j m)(h,v) is the smallest eigenvalue of the Schrbdinger's operator, 

study as a function of v and h the thermodynamic quantity : 

Limm^oo ( X{ (m;h,v) /m). 

(1.7) If A,2(m;h,v) is the second eigenvalue (which is >X{ (m;h,v) by standard 

results), study the quantity : 

Limm_>oo(^2(m;h,v) -X{ (m;h,v)). 

Forgetting the initial Kac's problem, we shall start to study in this article 

these two questions (1.6) and (1.7). Because it is a high dimension problem, 

we shall use (at least in the semi-classical context) the techniques introduced 

by one of us (J.S). Most of the results which are given here : 

(1) existence of the thermodynamic limit Limm_̂ oo ( X{ (m;h,v) /m) 

(2) asymptotic expansion of the limit as a formal series in h 

(3) rapidity of the convergence as m - 00 

are given in a relatively general framework but we shall see how it can be 

applied in our motivating example, in the particular case where v<vc. 

This is of course just the starting point (and the easiest) of a study which 

has to consider after the case where v >v c, and then the transition around 

v = vc. There is some hope to return later to the initial Kac's problem. This 

vc can be guessed by looking carefully to the properties of V .As 

observed by V.Kac, for v< 1/4, the potential V(m) has a unique minimum 

at 0 and appears to be convex. For v> 1/4, we shall observe a double well 

problem which is certainly more difficult to analyze. 

The principal result of this paper will be: 
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Theorem l , l 

If v < l / 4 , the limit A(h,v) = Limm_ioo ( X{ (m;h,v) /m) exists and admit a 

complete asymptotic expansion: 

A(h,v) ^ hZ. n A.(v).hj as h tends to 0. 

Moreover, if we denote the corresponding semiclassical expansions for 

X{ (m;h,v) /m by: 

{Xt (m;h,v) / m ) ^ h2j>0 A-dM-h1. 

there exists &0 s. t. for each j , there exists a constant Cj (v), s.t. 

|A.(v)- A.(m.v)|« Cj(v). exp(-^0 m). 

(v) can be chosen independently of v in a compact of [ 0,1 / 4 [. 

The problems, we consider here, are also connected to quantum field 

theory problems and a lot of results have been obtained by other techniques 

(see for example the new edition of [G1- Ja] for a updated presentation). 

The paper is organized in three parts. 

The first part (§ 2 and §3) is essentially devoted to the proof of the 

existence of the thermodynamic limit. This is a non-semiclassical proof but 

we shall see that a control of the convergence with respect to parameters 

can be useful. In §3 we give additional remarks (to [Sj]2) on universal 

estimates of the splitting of the two first eigenvalues . 

The second part (§4 and §5) is the semi-classical part and the natural 

continuation of two papers by one of us (J.S) [Sj]j 2. 
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