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Eigenvalue asymptotics 

related to impurities in crystals. 

Rainer Hempel 

1. Introduction. 

In the present paper, we continue the analysis of eigenvalues of Schrodinger 
operators H — XW in a spectral gap of H. As a typical example, one should 
think of H = —A + V as a periodic Schrodinger operator which, in solid state 
physics, may be used to describe the energy spectrum of an electron moving in a 
pure crystal (in the so-called 1-electron model). The perturbation W simulates 
a localized impurity, and A E R is a coupling constant; both V and W are 
assumed to be real-valued. Here we ask for the existence and number of discrete 
eigenvalues of H — \W which are moved into or through the gap as A increases 
from 0 to oo. The connection of this question to solid state physics is discussed in 
more detail in [7,13]; we only mention that "impurity levels" (i. e., energy levels 
which are introduced into the spectral gap of the pure crystal by impurities) 
are responsible for the color of crystals in the case of insulators, and strongly 
influence conductivity in the case of semi-conductors; cf., e. g., [3, 21]. 

In the mathematical analysis of this problem, it turns out that the case 
where W doesn't change sign enjoys many simplifying features: fixing E in 
the gap and assuming W > 0 for the moment, basic existence and asymptotic 
results can be read off from the associated (compact and symmetric) Birman-
Schwinger kernel W1/2(H - £ ) _ 1 W 1 / 2 , (cf. Klaus [18] and, most recently, the 
remarkable work of Birman [4]). This approach is based entirely on functional 
analysis and avoids PDE-methods. 

In the general situation where W changes sign, however, the associated 
Birman-Schwinger kernel is no longer symmetric and it is hard to extract 
useful information from its analysis. Here a more direct approach was de
veloped by Deift and Hempel [7] which combines localization techniques and 
a quasi-classical volume counting in phase space. Led by some simple phys
ical intuition—which says that a localized perturbation should have localized 
effects— we start from a suitable approximating problem on the ball Bn , and 
let n tend to oo. Note, however, that even this approximation step is by no 
means trivial, since restricting the operator —A + V to Bn and imposing Dirich-
let boundary conditions, will in general produce (unwanted!) eigenvalues in the 
gap. This method was further extended in some work of Hempel [13, 15], Alama, 
Deift and Hempel [1], where decoupling by an additional Dirichlet boundary 
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condition (DBC) or Neumann boundary condition (NBC) on OBR is used to 
separate the region where the perturbation XW is active from the remaining 
portion of BN. In Section 2, below, a brief outline of this technique is given (for 
a more detailed description, cf. [1,15]). By now, this approach has been fully 
developed and it provides various asymptotic results for the eigenvalue counting 
functions iV±, where 

N±(X;H-E,W) = V <иткег(Я ^ ßW - E) (1.1) 
0<//<A 

counts the number of crossings of eigenvalue branches, keeping track of mul
tiplicities; here, again, E is a fixed "control point" in the gap. In Section 
3, we present upper and lower asymptotic bounds on iV+ in the general case 
w = W+- W_, W± > 0. 

In Section 4, finally, our method will be used in the delicate problem of 
finding a lower bound for the (finite) quantity 

iV_ (00; K) := sup N. (A; H-E,Xk), 
A>0 

where K is a fixed compact subset of iV_(oo; K) counts the total number of 
eigenvalue branches which cross E under the influence of a potential "barrier" 
supported on K, with height going to infinity. While it is known that (in 
dimension > 2) no eigenvalue branch of H + X\K > A > 0, will ever cross E 
if the diameter of K is small enough, we also know that some eigenvalues will 
cross E UK contains a ball of sufficiently large radius (cf.[13,15]). In the present 
paper, we'll concentrate on if's which are drastically different from balls. Here 
it turns out that decoupling by natural DBC plays a crucial role, highlighting 
once more the fundamental difference between N+ and iV_ in the case where W 
is non-negative: while JV+ is dominated by the Weyl term, which is related to 
the volume of the interior of K, the number we are investigating now is more or 
less independent of the volume of K ; e. g., a set K looking like a swiss cheese 
with many small holes may be very effective in shifting eigenvalues through the 
gap although the volume of the cheese might be very small as compared with 
the volume of the holes. 

The approach described above allows us to discover some of the local effects 
of the perturbation and connects phase space analysis with eigenvalue counting. 
However, it is neither simple nor short, and there are many results which can 
be obtained by more direct methods; we conclude this introduction with a brief 
discussion of some of these alternatives. As mentioned above, a very fruitful 
idea consists in the recent observation of Birman [4] that one should apply the 
first resolvent equation to (H — E)~L in the Birman-Schwinger kernel to replace 
the control point E in the gap by some £"0 < infer (if) . The transformed kernel 
can then be analyzed with the aid of the Gokhberg-Krein theory of weak trace 
ideals. This yields some sharp asymptotic results for iV+ in the case where W 
is non-negative, and works even for E sitting on the gap edge, if H is periodic. 
Since this method tests asymptotics on the scale of Weyl's Law, it gives only 
weak information for iV_, however. 
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For W changing sign, W of compact support, a very short and elegant proof 
for the existence of eigenvalues of H — XW in the gap has been given by Gesztesy 
and Simon [11], while some very detailed and surprising facts concerning the 
trajectories of eigenvalue branches in the o.d.e.-case ("trapping and cascading") 
have been discovered by Gesztesy et al. [10]. Of particular interest and difficulty 
is the question for the number of eigenvalues in a given interval in the gap; here 
we would like to mention some recent 1-dimensional work of Sobolev [28]. For 
results concerning eigenvalues in gaps under the semi-classical point of view, we 
refer to Klopp [19] and Outassourt [20]. Finally, Alama and Li [2] have created 
a non-linear Birman-Schwinger principle which can be successfully applied to 
non-linear perturbations of periodic Schrodinger operators. 

2. Approximation and decoupling. 

We are now going to give a condensed description of the approach developed 
by Deift and Hempel; for details, see [1,15]. Starting from a Schrodinger operator 
H = — A + V , where V is a bounded potential and H is the unique self-adjoint 
extension of — A + V on C ^ R " ) , we make the basic assumption that (T(H), the 
spectrum of H, has a gap. Again, we are mainly interested in the case where the 
spectral gap occurs above the infimum of aess(H), the essential spectrum of H. 
As a typical example, one may think of H as a periodic Schrodinger operator, 
but spectral gaps may also occur in Schrodinger operators of disordered matter 
(Briet, Combes and Duclos [5]). Also, for convenience, we assume that V > 1. 
In the sequel, let a < b be such that 

[a,b]n<r(H) = Q. 

We next introduce the perturbation Wa bounded, real-valued function going 
to 0 at infinity. While H — XW has the same essential spectrum as i7, the 
perturbation XW may produce discrete spectrum in the gap. By Kato-Rellich 
perturbation theory, the eigenvalues of H — XW depend analytically on the 
coupling constant A, as long as they stay inside the gap. In order to count the 
eigenvalues, we now fix E G (a, b) and we define N±(X) := N±(X; H — E, W) as 
in (1.1). 

In the case of non-negative W there are some nice quasi-classical heuristics 
("volume counting in phase space"; cf. [7,1]) which suggest that one should 
expect for iV+ an asymptotic behavior with a leading order term as in Weyl's 
Law, 

7V+(A) - cvXvt<l J Wu'2, A —• oo, 
if W decays faster than quadratically. In contrast, if W behaves like c|x|~a, for 
x large and some constants c, a > 0, then iV_ is highly dependent on the decay 
rate a, 

iV_(A) -C .A^ /a , A - + 0 0 , 

under certain natural assumptions on W (cf. [1]). Note that the asymptotics 
of N+ can be obtained by Birman's method in [4], and this even in the case 
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where E is situated on the edge of a gap. The case where W changes sign is 
much harder to understand, and there are only a few upper and lower bounds 
on iV+(A), for A large; this will be discussed in Section 3 in more detail. 

We next describe the sequence of approximating problems which are used 
to compactify the problem. Let a1 < a and b' > b be such that the interval 
[a;, &'] doesn't intersect the spectrum of H. As in [13,1,15], we define 

Hn = -An + V\Bn, 

where — An denotes the Dirichlet Laplacian on the ball Bn in , and we con
sider the spectral projection IIn = P[a',bf] (Hn) associated with the interval [a', b'] 
where { P \ } A G R denotes the spectral family. Clearly, IIN is finite dimensional, 
and for d — V — a', we have 

a(Hn + c'Iln)n(a',b') = <b. 

In the next step, we apply cut-offs in order to restrict the integral operator n n 
to the region Bn — Bn/2- Letting i\)n be defined by </?n(:r) — ̂ (x/n), x G R", 
n G N, where ip G C°°(Rl") enjoys the properties ip(x) = 1, for |x| > 3/4, 
t/>(x) = 0, for \x\ < 1/2, and 0 < ip(x) < 1 else, we define 

Hn = Hn + cVnIIn^n-

Here the important point is that Hn has a spectral gap containing the interval 
[a, 6], for sufficiently large n, i. e., 

a(Hn) H [a,b] = 0, n > n0. 

This basic result is a consequence of Weyl's Law (which yields a bound dim IIn < 
cnu) and the fact that the eigenfunctions of Hn which build up the projection 
IIn are exponentially localized near the boundary dBn ( cf. [7,1] for details). 

The second useful fact is that the Birman-Schwinger kernels associated with 
Hn and W\sn converge to the full Birman-Schwinger kernel in norm. This in 
turn implies the following comparison result for the counting functions ([15; 
Proposition 2.3]), valid for W > 0. To keep the notation concise, we'll often 
write W instead of W\sn , in the sequel. 

2.1. PROPOSITION. Let H and Hn, n > n0, be as above, and let E G (a, b). 
Assume that W is a non-negative, bounded function, tending to 0 at infinity. 
We then have 

N±(X;H - E,W) > limsupAr±(V;ffn - £ , W\Bn), 0 < A' < A, (2.1) 
7 1 — X X ) 

N±(X;H-E,W) <]immiN±(\';Hn-E,W\Bn), 0 < A < A'. (2.2) 
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