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LARGE ATOMS IN LARGE MAGNETIC FIELDS 

ELLIOTT H. LIEB 

I. INTRODUCTION. 

In this talk I shall discuss the effect on matter, specifically atoms, of a 
very strong magnetic field. This turns out to be an interesting exercise in 
semiclassical analysis. Results obtained in collaboration with J.R Solovej and 
J. Yngvason will be summarized and details will appear elsewhere [LSY I, II, 
III]. The motivation for studying extremely strong magnetic fields of the order 
of 10 1 2 Gauss is that they are supposed to exist on the surface of neutron stars 
(cf. [FGP]). The heuristic argument usually given to explain these strong fields 
is that in the collapse, resulting in the neutron star, the magnetic field lines 
follow the collapse and thus become very dense. 

The structure of matter in strong magnetic fields is thus a question of 
considerable interest in astrophysics. 

II. THE PAULI HAMILTONIAN. 

To give the quantum mechanical energy of a charged spin-^ particle in a 
magnetic field B, we have to make a choice of vector potential A(x) , x G R 3 

satisfying B = V x A. 

The energy is then given by the Pauli Hamiltonian 

HA = ((p-A(x))-*)2 . (2.1) 
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Here p = —zV and a = (<RI, <72,0-3), where 

cri = 
0 1 
1 0 , °2 = 

O-z 
z 0 

1 0 
0 - 1 

are the Pauli matrices. The Pauli Hamiltonian acts in the space L 2 ( R 3 ; C 2 ) . 
We can also write HA = (P — A ) 2 — B • a. In the case A = 0 we get as usual 
Ho = p 2 = —A. We shall here concentrate on the case where B is constant, say 
B = (0,0, B), with B > 0. We choose A = ^ B x x. In this case the spectrum 
of HA is described by the socalled Landau bands evv = 2Bv +p2, where p is 
the momentum along the field and v = 0 , . . . is the index of the band. The 
higher bands v — 1,... are twice as degenerate as the lowest band v — 0. 

As usual in the study of fermionic energies we shall be interested in the 
sum of the negative eigenvalues of operators of the form H — HA~V(X), where 
V(> 0 for simplicity) is an external potential. In this connection there is an 
important difference between if A and the operator (p — A ) 2 which has no spin 
dependence. While the spectrum for (p — A ) 2 is (JB, 00) the spectrum for HA 
is (0,oo). 

Indeed, one can estimate the sum of the negative eigenvalues of H by 
L jV(x)5^2dx1 according to the standard Lieb-Thirring inequality (with a 
magnetic field the proof of this inequality given in [LT] is still correct if one 
appeals to the diamagnetic inequality, i.e., that the heat kernel with a mag
netic field is pointwise bounded in absolute value by the heat kernel without 
a magnetic field.) However, in the case of HA — V the question is somewhat 
more subtle. In fact, if V G L 3 / 2 ( R 3 ) the operator (p - A ) 2 - V has a finite 
number of negative eigenvalues, while the operator HA — V can have infinitely 
many negative eigenvalues (compare [I]). We can, however, prove [LSY I,III] 

THEOREM 1. There exist universal constants LUL2 > 0 such that if 
we let ej(B, V), j = 1,2,... denote the negative eigenvalues of HA — V with 
0 < V E L 3 / 2 ( R 3 ) H L 5 / 2 ( R 3 ) then 

TlejiB^KLiB 
3 

V{xf'2dx + L2 V{xf'2dx. (2.2) 
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We can choose L\ as close to 2/Sir as we please, compensating with L2 large. 

The first term on the right side is a contribution from the lowest band 
v = 0. For large B this is the leading term. 

We now ask the question of a semiclassical analog of (2.2). Thus consider 
the operator 

[(hp-bsL(x))'o\2 -v(x) , (2.3) 

where a(rr) = \z x x, z = (0,0,1) and 0 < v. 
If one computes the leading term in h~l of the sum of the negative eigen

values of (2.3) for fixed b one finds as in [HR] that there is no b dependence. In 
our case, however, we shall not assume b fixed, or more precisely not assume 
that b is small compared with h~l. The reason for this is that in the application 
to neutron stars it is not true, as we shall discuss below that b «C h~l. 

The interesting fact is, however, that we can prove ([LSY III]) a semi-
classical formula for the sum of the negative eigenvalues of the operator (2.3), 
which holds uniformly in b (even for large b). 

T H E O R E M 2 . Let ej(h, 6, v)9 j = 1,2,..., denote the negative eigen
values of the operator (2.3), with 0<ve L 3 / 2 ( E 3 ) n L 5 / 2 ( K 3 ) . Then 

lim 
1 

;|ej(M,v)|/£sci(/i,M)) = 1 , 

uniformly in b, where 

Esc](h,b,v) --
1 

3TT 2 
h~2b (v(xf'2 + 2 

00 

v = 1 
[v{x)-2vbh}X2)dx . (2.4) 

Here lt]+ = t if t > 0, zero otherwise. 

The formula (2.4) was already implicitly noted in [Y]. 

For № < 1 , the right side of (2.4) reduces to the standard semiclassical 
formula from [HR], 

2 
15TT2 

v{xf,2dx. 

(Recall that we are counting the spin which accounts for the 2 in front of the 
sum in (2.4).) For bh > 1, the sum in (2.4) is negligible, and we are left with 
the first term. 
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Formula (2.4) (with h replaced by 1) can be compared with the Lieb-
Thirring inequality (2.2), which holds even outside the semiclassical regime. 
The two terms in (2.2) correspond to respectively the b —» oo (first term) and 
6 —• 0 (last term) asymptotics of (2.4). A natural question, which is similar 
to the Lieb-Thirring conjecture, is whether the semiclassical constant 1/37T2 is 
the optimal value for L\ in (2.2) rather than as proved 2/37T. 

III. THE ATOMIC HAMILTONIAN. 

The Hamiltonian describing an atom with N electrons and nuclear charge 
Z in a constant magnetic field B = (0,0, B) is 

HN = 

N 

r = 1 
H^-z\Xi\-1 

\<i<j<N 

\X{ Xj\ , (3-1) 

acting in H = AL2(E3; C2). We shall here give a short sketch of what we call 
the Thomas-Fermi theory for (3.1). The goal of this theory is to approximate 
the ground state energy 

E(N, B, Z) = inf specHH(N) . (3.2) 

Furthermore, in the case where H(N) has a (normalized) ground state ̂ G W , 
i.e., H(N)ib = E(N, B, Z)ib, we also want to estimate the density 

H(N)ib = E(N | | ^ (x ,x2 , . . . ,XN)\\2Ac2dx2...dxN . (3.3) 

The first step in studying (3.1) is to replace the repulsive two-body term, 
/ j 1 ̂  A \X% X j I , by a socalled self-consistent mean field potential of the form 
Yli / j 1 ^ A (This replacement is as in standard Thomas-Fermi theory (see [L]) 

and shall not be discussed here.) The question is how to find the appropriate 
self-consistent density p. It must of course be an approximation to p^>. 

It should be noted that as we replace the two-body potential by a self-
consistent one-body potential we must also subtract a term 

1 
2 

p(x)\x~y\ 1p(y)dxdy 
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