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Some Developments and Applications of the Abstract Mourre Theory 

Anne Boutet de Monvel-Berthier and Vladimir Georgescu1 

1. I n t r o d u c t i o n 

In 1979 Eric Mourre introduced the concept of locally conjugate operator and 
invented a very efficient method of proving the limiting absorption principle 
(L.A.P.). His ideas opened the way to a complete solution of the N-body problem: 
detailed spectral properties have been obtained by Perry, Sigal and Simon and 
asymptotic completeness has been proved by Sigal and Soffer. The abstract side of 
Mourre theory has been further developped by Perry, Sigal and Simon [PSS] (they 
eliminated an assumption on the first commutator which was annoying in 
applications) and by Mourre [M] and Jensen and Perry [JP] (the L.A.P was 
established in better spaces). 

In [ A B G ] efforts were made in order to avoid the use of the second 
commutator of the hamiltonian with the conjugate operator. Optimal, in some 
sense, results in this direction were obtained in [BGM2] and [BG1]. In [BGM2] the 
space £ which appears below is the domain of the hamiltonian and the main 
theorem is easy to apply in the N-body case with short-range and long-range 
interactions of a very general nature. In [BG1,2] the space # is the form-domain of 
the hamiltonian (the domain is not assumed invariant under the group generated by 
the conjugate operator, this being compensated by a stronger condition on the first 
commutator) and the theory is applied to pseudo-differential operators. In both 
cases, the L.A.P. is established in "optimal" (in some sense) spaces, which allows 
one to get without any further effort very good criteria for the existence and 
completeness of relative, local wave operators. 

The main part of this article is devoted to an exposition of several applications 
of a version of the locally conjugate operator method which we developed in 
[BG1,2]. In fact, theorems 3.1 and 3.2 below are the main results got in [BG1] and 
in sections 4 and 5 we show their force and also fineness. In the preliminary section 
2 we introduce and discuss the most important notion we have isolated, that of 
operator of class # 1 with respect to a unitary group. This is a quite general 

property and in section 5 we show in some simple cases that it is almost impossible 
to be replaced by a weaker one without loosing the strong form of the L.A.P. given 
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in theorem 3.1. Moreover, in section 5 we show how to deal with hamiltonians with 
very singular interactions (this part will be treated more thoroughly in a later 
publication). But section 4 contains the most important results. Although their 
formulation is abstract, it is trivial to apply them to many-body hamiltonians. After 
the Nantes conference, as A. Soffer raised the problem of the spectral analysis of 
hard-core N-body hamiltonians, we decided to formulate, in this paper, several 
consequences of theorem 3.1 such as to cover non-densely defined hamiltonians (in 
fact we use pseudo-resolvents in place of resolvents). The particular case of hard­
core N-body hamiltonians is the subject of a in-preparation-joint-paper with A. 
Soffer. Finally, an appendix contains a technical estimate related to Littlewood-
Paley theory which seemes to us quite powerful in various situations. 

2 . U n i t a r y Groups in F r i e d r i c h s C o u p l e s 

In our approach, the natural framework for the "locally conjugate operator 
method" is a triplet ( £ , # ; W ) consisting of two Hilbert spaces % such that 
continuously and densely, and a strongly continuous unitary one-parameter group 
W = {Wa}ae R in which leaves $ invariant: W a £ c £ for all oce R .The Hilbert 

spaces are always complex but not necessarily separable. In our applications, # will 
be either the domain of the hamiltonian, or its form domain, or it will be just 2f£ 
(although, in this last case, the hamiltonian could be unbounded and even non-
densely defined). 

A triplet ( # , # ;W) with the preceding properties will be called a unitary group 
in a Friedrichs couple , the pair of spaces ($,3%) being called a Friedrichs couple. 
In this section we shall fix such a system (#,<# ;W) and we shall study some notions 
related to it. 

Let be the adjoint (or antidual) space of identify by using Riesz 
lemma and embed as usual ^c^zfcz^*. Then define ^s=[^^*](1_s)/2 by complex 
interpolation for -1<S<1, so that g>1=g>, £ ° = ^ and J T 1 ^ * . Observe that we have 
canonical identifications (S£s)*=$~s. We shall denote iT=B(^,^*) the Banach space 
of continuous linear operators from £ to and 11-11̂  its norm; observe that 3C is 
equipped with an isometric involution T»—»T*. For each s , t e [ - l , + l ] we have 
canonical embeddings B($s,$l)c:X. Then the norm in £s, resp. in B(^s,g>t), will be 
denoted ll-lls, resp. IMIsa , and we abbreviate IHI0 = ll-ll , ll-ll00 = 11-11. 

The following fact will be often used below: 

L E M M A 2.1: Let E ,F be Hilbert spaces such that E c F continuously and let 
W„(oc)=elAoc, a e E , f e f l C~~group in F which leaves E invariant: W „ E c E 
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(VoceR).Denote Wa=WalE considered as operator in E. Then {Wa}aeIR is a C0-
group in E and its infinitesimal generator is the closed, densely defined operator 
AE in E defined as the restriction of A to D(AE)={u€D(A)nEI AueE}. 

Proof: The lemma has been proved in [ABG] under the assumption that E,F are 
separable. We shall reduce ourselves to this case. The only problem is to prove the 
continuity of a^-> Waue E when ue E. Let E0 (resp. F0) be the closed subspace of 
E (resp.F) generated by {Waul a e R } . Then E0cF0 continuously and densely, W 
leaves E0 and F0 invariant and it is strongly continuous in F0. Moreover, FQ is 
separable because a*—> WaueF0 is continuous and its image is a total subset of FQ. 
Since F*cE* continuously and densely, we see that E* is separable, hence E0 is 
separable too. Now we may apply lemmas 1.1.3 and 1.1.4 from [ABG1] to 
(E0,F0;WIF()).B 

Let us apply this lemma in the case of the unitary group W in the Friedrichs 
couple (E, H) Denote A the self-adjoint operator in such that Wa=elAcc. The 

notations W^, A^ have the same signification as in the preceding lemma. Now let 
^* (£ -if. ^ 

W* =(W_a) eB(S> ). Since for a group weak and strong continuity are equivalent, 

{W* }a€]R will be a C0-group in 5 ; we denote A5 its generator (closed, densely 

defined operator in such that =exp(iocA^ )). 

It is easily shown that W* \% =Wa and an application of lemma 2.1 shows that 

A is just the restriction of A^ to {ueD(A^ )nX | A^ u€^f} . Interpolating between 
# and we see that induces a C0-group W^S in each the infinitesimal 
generators of these groups being the natural restrictions of A^ . It will be obvious 
in later arguments that no confusion arises if we drop the index which indicates the 
space in which the operators are considered. We summarize these facts in: 

PROPOSITION 2.2: Let ( £ , # ;W) be a unitary group in a Friedrichs couple. Then , 

for each o teR, the operator Wa in ffl is continuous when ffl is equipped with the 

topology induced by and, if we denote again by Wa its unique extension to a 

continuous operator on the application a*—> WaeB(^*) is a C0-group in *§* 

which leaves invariant and induces a C0-group in each space #s. Let A be the 

infinitesimal generator of the group W in $*9 i.e. A is the unique closed, densely 

defined operator in such that Wa=elAa; denote D(A;#*) its domain. Then for 

each s e [ - l ,+ l ] , the restriction of A to 
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(2.1) D(A;£S) = {ue£s I ueD(A;£*) and AueV*} 

is a closed, densely defined operator in <$s which is just the infinitesimal generator 
of the C0-group Wal^s. 

We shall always consider D(A;#S) as a Hilbert space, the norm being the graph 

norm associated to A in £s: llull^ = [ llull̂  + IIAull̂  ]1/2. It follows from a well-known 

lemma of Nelson (see theorem 1.9 in [D]) that D(A;£ )cD(A;£s )c :£ s continuously 

and densely for all s e [ - l , + l ] . Moreover, the operator A with domain D(A;^f ) is 

self-adjoint in 2%. 

Finally, let us remark that the equality Wa =W_a has to be interpreted in the 

following sense: i f -1<S<1, then the adjoint of the operator Wal^seB(^s) is equal 

to W_al^_seB(g>_s), the identification (#s)*= $-s being assumed. 

Let us consider now the group of automorphisms of the Banach space 

%=B($$*) induced by W, namely ^a (T)=wotTWa for T e X - 0bserve that 

a»—> #^(T)e^T is continuous only when X is equipped with the strong operator 

topology, hence {^a^aeR ls not a C0-group on 9C. However, one has Wa=e^a, 

with £$(T)=[A,T], in a sense which we shall explain below. 

DEFINITION 2.3: Let O<0<1. We shall say that an operator TeB($ *) is of class 

CE(A;£,S*) , andwe shall" write TeCE(A;0',£*), ifthe function a — > ^ 0 > 3 f is bolder 

continuous of order i.e. there is c<<*> such that ||WeTW£-TII ̂ ~<cl£r for lel<l. JOT 8=+0 

we replace Holder continuity by (Dini-continuity, more precisely we write TeC+0(A;^,^ *) if 

JjIIWeTW*-TII^ £-1de<oo. 

Remark that we could replace here W £ T W £ - T by the commutator 

[T,We]=TWe-WeT=(WeTW*-T)We. One can refine the notion and define 

T€Ce(A;8>s,g>t) for some - l<s , t< l by replacing the norm \l\\qr with the norm 

||•||s,r 
If T:£— is a linear continuous operator, we shall denote [A,T]=-[T,A] 

the continuous sesquilinear form on D ( A ; £ ) defined by the formula 

<ul[A,T]v> = <AulTv>-<ulTAv>. Taking into account that W is a C0-group in £ 
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