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The Scott Correction and the 
Quasi-classical Limit 

Barry Simon1 

The Scott correction is the second term in a large Z asymptotic expansion 
of the total binding energy of an atom with nuclear charge Z. The atom is 
a complicated system with multiparticle correlations among the electrons. 
Nevertheless, the proof of the Scott correction can be reduced to the study 
of the semi-classical limit of a one-body system where the electron-electron 
interaction is replaced by an averaged self-consistent potential. 

This reduction is more or less well-known to the experts in the field, so 
this paper is unabashedly pedagogic. However, previous discussions have so 
intertwined the reduction to the classical limit with the control of that limit 
that the simplicity of the reduction has been hidden. 

Basically, we will compare a quantum Hamiltonian, i f , with a quasi-
classical Hamiltonian, HQC, with responding energies E and EQC, and ground 
states \I> and ty®0 and we will show (modulo a fact about the quasi-classical 
limit) that: 

E < (#QC, HVQC) = EQC + O(Z5/3) 

EQC < (W, HHQCV) = E + O(Z5/S) 

where E ~ Z7/3 and the Scott correction is O(Z2). 
To be precise, the iV-electron charge Z atomic Hamiltonian acts on 

L2aR3N by 

H = 
N 

E 
i=l 

- A f -
Z 

xi E 
i<j 

1 

xi - xj (1) 

where a point in R3N is written as ( # 1 , . . . x n ) with X{ G R3 and L\ means 
those functions W ( x 1 , . . . ,w#yv) in L~ which are antisymmetric under inter
changes of coordinates. 

The Hamiltonian H has several simplifications. We ignore electron spin 
which affects the statistics. It can be easily accommodated by changing the 
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constants in the discussion below. We ignore corrections due to a finite nuclear 
mass. We ignore relativistic corrections. 

What will concern us is the total binding energy: 

E(N, Z) = infw(W, Hi!) = inf spec(H) 

and 
E{Z) = E(N = Z , Z) 

We will henceforth take N = Z without further comment. 
To describe the quasi-classical problems, we describe the Thomas-Fermi 

model (invented by Thomas [16] and Fermi [3]). This posits an electron gas 
with density p{x) obeying 

/ p(x)dx = Z (2a) 

and energy given by 

STF(P) = d p5/3(x)dxfd - p(x)\x\-1Z + 
1 

9 
P{*)p\y) 
\x-yy\ 

(2b) 

where d is the universal constant 3 
5 

_3_ 
4TT 

.5/3 
defined so that the sum of the 

first N eigenvalues of the Dirichlet Laplacian in a cubic region of volume V 
is asymptotic as iV —• oo to 

dV(N/V)5/35 

Thus, the first term is a quasi-classical limit of the kinetic energy term in (1) 
and the other terms are clearly the nuclear attraction and electron-electron 
repulsion. 

According to Lieb-Simon [7,8], there is a unique p, call it />^F, minimizing 

ETFz(Z) = h r f {£rF( /0 ) | ( 2a ) holds; p G L1 fl L5 /3} 

and moreover, 
E{Z)/ETFz(ZZ) 1 (3) 

as Z —> oo. 

It is fairly easy to determine the Z dependence of T F theory: 

ETF(Z) = Z7'3ETF(l)1/3xze 

ETF(Z) = Z7'3ETF(l) = Z7'3eTF 

In what follows, a critical role will be played by the T F potential 

<pTzF{x) = 
Z 

\*\ 
\ x - y \ - 1 PzTF(y)dy 
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Note that the Euler-Lagrange equations for minimizing £ read 

5 
3 

dp2'3 = P (4) 

Equation (3) says that E(Z) ~ C T F Z 1 ^ F S as Z —> oo. There has been 
work on the next two terms in the asympototic series. Scott [11] looked at 
the situation where the electron repulsion is dropped and the iV-body problem 
reduces to a one-body problem (Hydrogen atom), which can be exactly solved. 
He noted the leading corrections to the Thomas-Fermi analog for this model 
of order Z2 came from the inner shells where the electron repulsion shouldn't 
matter; so he posited that the O(Z2) term was the same for the true atomic 
case. That 

E(Z) = e T F Z 7 / 3 D + escott^2 + o(Z2) (5) 

was proven recently by Hughes [4] and Siedentop-Weikard [13]. A recent 
preprint of Ivrii-Sigal [5] provides a new proof and extends the result to the 
molecular case. 

Fefferman-Seco [2] have announced control of the Z5/3 term, which has 
a contribution due to electron exchange (computed originally by Dirac [1]) 
and one from the higher order classical limit (computed by Schwinger [10]). 
Actually Fefferman-Seco study inf E(Z, JV), not E(Z) but they should be the 
same to 0 ( Z 5 / 3 ) . N 

These proofs are all over 100 pages and one of our goals here is to hope 
for a proof of the Scott correction on one foot. 

The quasi-classical problem we will relate to H is given by 

HQC 
z 

E 
/'=1 

- A , : - TF 
QZ x) 

1 
2 , 

PTZFxPTFZy 

x - y\ 
d3xd3y (6) 

The final term in H®( is a number (constant), which needs to be there because 
ipz overcounts the energy of interaction. In fact, the constant is exactly ([8]), 

1 
3 

C T F Z 7 ' 3 Q 

By scaling ip'y/ = ZAl*ip[ h {Zll2x) so — At- — <p"zF(t) ŝ unitarily equiva
lent to Z ^ 3 h f Q z whore 

ETF(Z) = Z7'3ETF(l)pt(x)fdX 

Thus, h^c is a one-body Hamiltonian with h = Z 1/3 and Z —• oo is 
the h —• 0 limit. Let 

e ? c ( Z ) < e Q 2 C ( Z ) < - . -

be the eigenvalues of /i^C with eigenfunction ?/^C;Z, ^ C ; Z , . . . . Then 
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E^C(Z) = inf svec(№cC) = Z4/3 
z 

E 
2 = 1 

e ? C ( ^ ) -
1 

3 
eTFZ7/3 

and the one electron density for H®c is 

pzqc (x) = ZZ 
z 

E 
2 = 1 

niQC;z (Z1/3x) 2 

Our goal is to prove: 

T H E O R E M . 

E{Z)-EQC{ZZ)Z\ <cZb'3 + 
1 
2 

6p(x)6p(y) 

\ x - y \ y 
d3xd3yy 

where 
6P(X)=[PY(X)-PT(X)} 

The point is that the bp Coulomb energy is 

z 7 / 3 1 
2 

bp{x)bp{y)y 

F ~ y | 
with 

6P = 
1 
Z 

2 E 
2 = 1 

ni (x) |2 - P i 
.TFI x) 

The leading order for 1/z E^ 77? is pi by ( 4 ) , so good control of the classical 

limit should imply that bp ~ Z~xl3 so one expects that 

1 
2 

bp(x)bp(y) 

\ x - y | 
0{Zb'A) (7) 

or less (Seco [12] tells us that it is less). Thus, the Scott correction (5) would 
follow from control of EQC, a one-body problem, to 0(Z2) and a proof of (7) . 

We now turn to the proof of the Theorem. We will show that 

E(Z) < EQC(Z) + 
1 
2 

bp{x)bp{y) 

\x - y\ 
d3xd3y (8a) 

and 
EQC(Z) < E(Z) + cZ5/3 (8b) 
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