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S C A T T E R I N G OF W A V E S I N A M E D I U M 
D E P E N D I N G P E R I O D I C A L L Y O N T I M E 

B. R. VAINBERG 

I. I N T R O D U C T I O N 

We obtain the asymptotic behaviour as t —• oo, |x| < a < oo of solutions 
of exterior mixed problems for hyperbolic equations and systems when the 
boundary of a domain and coefficients of the equations depend periodically on 
time. Our method can be regarded as an alternative one to the Lax-Phillips 
scattering theory. Using the Lax-Phillips method we have to construct at 
first waves operators and a scattering matrix. Then we study some analytic 
properties of the scattering matrix and some properties of a special Lax-Phillips 
semigroup Z(t) and then we derive asymptotic behavior of solutions of the 
exterior mixed problem as t —-> oo. In our direct method at first we find the 
asymptotic behavior of the solution of the exterior mixed problem. Unlike Lax-
Phillips we do it without using any abstract result on spectral representation, 
outgoing and ingoing subspaces and so on. Then we obtain existence of the 
wave operators and the scattering operator. In fact, it is not a difficult problem 
if you know asymptotic behavior of the solutions. 

Both of these methods were constructed earlier in the stationary case, 
when the domain and coefficients of the equations did not depend on time 
(there are references in [6]). Recently a few papers by J. Cooper and W. 
Strauss appeared which contain some results of Lax-Phillips theory for scatter
ing of waves by a body moving periodically in t ([1],[2],[3]). Another method 
of research of this problem is based on the theorem of RAGE type and is sug
gested by V. Petkov [4]. These authors proved the existence of a scattering 
operator for wave equation in exterior of a body which depends periodically on 
t if n > 3 and obtained asymptotic behavior of solutions of this problem for 
odd n. They also studied hyperbolic systems of first order when dimension n is 
odd. Our method gives the possibility to study general time periodic systems 
of any order and moreover the dimension of the space can be arbitrary and the 
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energy of solution can be unbounded with respect to time. Some of the proofs 
given below are very concise. The omitted details can be reconstructed with 
the help of [7], [8], [9]. 

II . A S Y M P T O T I C B E H A V I O R OF S O L U T I O N S 

Let x e Mn, dt = d/du dx = (d/dxw-td/dxn), Q e ffigj be 
the exterior of the cylinder with a curvelinear boundary which depends peri
odically on t. Let u = (u^\ 
L = L{t,x,dt,dx) — {Lij} be a hyperbolic I x H matrix. We consider the 
exterior mixed problem 

(1) 
Lu = 0, (*, i )Gfl , t > r; Bu\dn = 0, t > r; 
&tu\t=r = / j , 0 < j < m - 1, xenr = Qf]{t = T}. 

Here B = B(t,x,dx) is a boundary operator of general type, m = max 

oid Lij. 

The main problem of this part of the article is the following. Let / = 
(/o? fm-i) be a function with a compact support. The asymptotic behavior 
of solution u is to be found when t —* oo and x is bounded, that is the initial 
data are localized in space and the solution at large t is of interest only in the 
limited part of the space. 

We fix an arbitrary constant a for which dfl (Z {(t,x) : \x\ < a — 1}, con
dition Hi is satisfied and / = 0 when |x| > a. 

Condit ions . 

Hi. The medium is homogeneous in the neighborhood of infinity, that is 
L = Lo(dt, dx) when |x| > a, where Lo is a homogeneous matrix with constant 
coefficients. 

H2. The problem (1) is time periodic, that is ttt+r = Fit and coefficients 
of the operators L and B are periodic functions with respect to t with the same 
period T. 

H3. The problem (1) is correct and Duhamel principle is valid. 

Let C2°(f2r), C^(Cl) be spaces of infinitely smooth functions in Clr or 0, 
which are equal to zero when |x| > a; HS(D) be a Sobolev space of functions 
in domain Z), Hfoc(D) be a space of functions in the domain D belonging to 
HS(V) for any bounded domain V <Z D\ 
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t¡> € HS'A if exp(At)ip G Hs(ii) ; 

ф 6 H*'£ if V e Яв'л and ^ = 0 when |x| > a or t<0. 

If v =» ( i / 0 , . . . , i / m _ i ) , t h e n we denote HV(QT) = E o < j < m - i H^(QT). 
Let / = ( / o , . . . , fm-i) £ -FV if / j £ C 2 ° ( ^ r ) and compatibility conditions are 
satisfied, that is there exists w G H™c(£l) for which boundary and initial data 
of problem (1) are valid. 

We shall use the same notation for the space of functions and vector-
functions if the latter is a direct product of n copies of the space of functions. 
At last let H(J/) be the closure of the space FT with respect to the norm of the 
space HU(QT). 

The correctness of the problem (1) means that it has the unique solution 
u e H%c(0,f){t > T}) for any / £ FT and there are Vj,q G IR such that the 
operator 

T : H{y) 

Us 
0, 

t>T 
t < T , 

feFr 

has the following continuous extension: UT : H{y) - Hfoc(Ù). 

According to Duhamel principle there exist AQ(S) such that the problem 

Lw — g, (¿, x) G fi] BW\OQ = 0; w = 0 when t < 0 

is uniquely solvable in the space HS,A for any g G H^0 if 5 > m,A> Ao(s). 
Besides the operator 

(2) V:H$^Ha>A, Vg = w, s>m, A > A0(s) 

s bounded and 

w(t,x) = 
Jo 

u(t,T,x) dr 

Here u is the solution of the problem (1) with / = Pg(r, •), where Pg = 

( 0 , 0 , #(r, x)). It is implied that Pg G H{v) if g G H^A. 

The condition H$ means that the boundary of the body must not move too 
quickly. For example, for the wave equation the velocity of the moving bound
ary must be lower than the velocity of propagation of waves in the medium. 
In this case the condition # 3 is satisfied for all the basic problems for wave 
equation. 

In the case of general hyperbolic equations and systems we change the 
variables —> y = y(t,x) so that O could take the form of the 
straight cylinder. The velocity of the moving boundary must be such that the 
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system in the new variables remains hyperbolic at t. Then the condition H3 is 
satisfied if boundary operators satisfy uniform Shapiro-Lopatinsky condition. 

H4. Non-trapping condition. It means the following. 

Let E = E(t,r, x,x°) be the Schwartz kernel of the operator UT, that is E is 
Green matrix of the problem (1). It is supposed that there exists such a function 
T(p), tha t E is infinitely smooth when < p, t — r > T(p). This 
condition is equivalent to the following: all the bichar act eristics are outgoing 
to infinity when t tends to infinity. 

if5. The operator L$ has no waves with zero propagation velocity, that 
is detLo(0, a) 0 when a ^ 0. One can give up this condition in the same way 
as it was done in the stationary case in |5| . 

Let (1°) denote the problem (1), when r = 0. 

THEOREM 1. Let the conditions Hi - H5 be satisfied, f G H(*/). Then there 
exists a sequence of complex points kj which are called the scattering frequencies 
and integers p,q,Pj and periodic on t functions uo{t,x),Ujj{t,x) G C°° with 
period T such that 

1) — 7r/T<Rekj < 7r/T, Imfcj+x < Im kj, Im kj —• 00 a<<Cs —> 00 

2) Ifn is odd then the solution of the problem (1°) has the following expansion 
N Pj 

(3) u = ] ^^C ' j l zUjJ / ( t , a ; )^exp(—ifc j t ) + un, 
3=1 t=o 

where there exist A and C = C{a,N,j,a) such that 

(4) \d}dZuN\ < Ctxexv(ImkN+1t)\\f\\H(l/), 7r/T<Rekj < 7r/T\x\ a, * - Cj,j(/), Co = Co(/) 

3) If n is even then 
pj 

(5) u — ^2 ^2 ^Mui.*(*>x)tl exp(-ifcj£) + CSGSGoUo(t,x)tplnqt + w, 
lmfcj>0VCB/) C=0 

where Cjj = C j , j ( / ) , Co = Co( / ) and 

(6) I ^ W ^ C I ^ ^ / n ^ O I I I / l l / f M , N < a , i-Cj,j(/), Co = Co(/) 00. 

Remark. The scattering frequencies kj belonging to the upper half plane cor
respond to the exponentially growing terms. They are finite in number. The 
scattering frequencies kj belonging to the real axis correspond to the terms, 
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