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Long Range Scattering and the Stark Effect 

Denis A.W. White 

1 Introduction. 

In this Article we discuss long range quantum mechanical scattering in the 
presence of a constant electric field. The electric field is assumed to be of 
unit strength in the ei = ( 1 , 0 , . . . , 0 ) direction of n-dimensional space, Rn. 
The corresponding Hamiltonian for a quantum particle of unit mass is HQ = 
- ( 1 / 2 ) A - xu with A = E]=id2/dx2j. (HQ is essentially self adjoint (as 
an operator on L2(Rn)) on the Schwartz space of rapidly decreasing smooth 
functions.) A second Hamiltonian H = HQ + V is regarded as a perturbation 
of HQ by a potential V. The potential V = V$ + Vi consists of a "short range" 
term Vs and a "long range" term Vj. More precisely, 

S R Hypothesis. Vs is a symmetric operator, VS(HQ + i-1)1 is a compact 
operator and 

/ 
•oo 

n 
\F(xx >r2)Vs(H0 + i)-l\\dr < oo 

where. F(-) is multiplication by the characteristic function of the indicated set. 
L R Hypothesis. VL(X) is real valued on Rn, infinitely differentiate and 

for some e > 0 and for every multi-index a 

\DaVL{x) < C , a ( * l ) - W / a _ < 

\D°VL(x)\ < o(l) as \x\ —* 00. 
Here (xi)2 = 1 + x\ and D = - i V . 

Example. If Vs is multiplication by a real valued function 

vs(x) = {x(*i)(i + *?r/2 + x(-*i)(i + *l)1/2}Vs(*) 
where a > 1/2 and Vs = o(l) as |x| —> oo and Vs is bounded and measurable 
and where 

X (x1) 
1 if xi > 1 
0 if xi < - 1 

(1.1) 
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then Vs verifies the above short range hypothesis. (See Yajima [16]; local 
singularities may also be allowed.) The long range assumption is satisfied if, 
for some 0 < a, B < 1/2 and some real 6 i and 62 , 

VL(x) = (a)"6 cos 121 I*) cos(62|a^B).( 

Li general these assumptions assure that V(HQ + i)"1 is compact so that 
H is self adjoint on the domain of HQ. (Perry's book [14] is a good general 
reference.) 

Introduce now the wave operators. Dollaxd's [31 modified wave operators 
WD and Wn are defined by 

W £ = s-lim 
t—±00 

eitHe-itHoe-iXD(t)ct) (1.2) 

where "s-lim" indicates that the limit is taken in the strong operator topology. 
The "modifier" e"lXD^ was first introduced by J.D. Dollard [3] in the case 
of no electric field (HQ = — A/2) to extend the usual scattering theory which 
was based on the M0ller wave operators, 

W ± = s-lim 
t->=Foo 

eitHe-itS0 (1-3) 

to the case V = VL was the Coulomb potential (VL(X) = C/\x\, for C a 
constant). An alternative choice of wave operators, are the two Hilbert space 
wave operators 

W±(J±) = s-lim 
i-»q:oo 

eitHe-itS0DQa (1.4) 

where J* are bounded operators conveniently chosen (as in §2 below.) The 
application of these operators to study long range scattering is due to Isozaki-
Kitada [8] (who called J* "time independent modifiers") and Kitada-Yajima 
[12] who considered the case of no electric field. The two Hilbert space wave 
operators have certain technical advantages over the modified wave operators 
but the latter are the historical vehicle for studying long range scattering 
and are important for proving the non-existence of W±] see Theorem 3.1 
below. Each of the wave operators (for example W£) is said to be (strongly 
asymptotically) complete if its range is the sub space L2(Rn)c of continuity of 
H. (£2(Rn)c is the orthogonal complement of all the eigenvectors of H.) Each 
wave operator (Wp, to be specific) is said to intertwine H and HQ if 

e - U H W £ c s = W + e - U H ° . f d 

To state our results we must introduce the "modifiers." For the two Hilbert 
space wave operators we choose [8] 

J±u(x) = ƒ eixE+io±(x,E) dEDEdeDe (1.5) 
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where u denotes the Fourier transform of u and 6± are smooth real valued 
functions to be specified in §2 below. (J* are not unique.) Here and below 
integrals axe understood to be over all of Rn unless otherwise indicated and 

<ff = (27r)-n/2df. 

Theorem 1.1 Hypotheses LR and SR imply that the two Eilbert space 

wave operators W±(J±) exist and are complete and are isometries that inter­

twine H and HQ.. Moreover H has no singularly continuous spectrum and its 

eigenvalues are discrete and of finite multiplicity. 

Dollard's time dependent modifier can be defined as follows: Let Xo(t) be 

Fourier equivalent to multiplication by a real valued function, X where 

x ( & , . . . , £ „ , * ) = ƒ 
•±t 

0 
^ ( r y ( 6 , . . . , £ n , r ) + (T2/2)e1)dr (1.6) 

for ±£ > 0 and where Y is some smooth function of n — 1 momentum 

variables plus time (t) taking values in Rn such that the first component 

y i ( £ 2 , . . . , £ „ , i ) = 0and 

IDfSYfa,. ..,£„,*)-£x)l = 0(|*|-); 
d 

dt 
(ry(6,...,£n,r) + (T2/LM)FTGQ 

for all multi-indices /3, locally uniformly in £± = (0,^2* • • • >fn)- .In particular 

in the one-dimensional case Y = 0. In §3, Y is explicitly constructed.) Thus 

XD(t) = XX(D2, . . . ,Dn, t ) . 

Theorem 1.2 Assume Hypotheses LR and SR. Then the modified wave 

operators W£ exist and are complete and are isometries which intertwine 

H and HQ. Moreover the M0ller wave operators W± exist if and only if 

e*x(6i.«i£n,t) converges {n measure as t —> ±oo on every compact subset o/Rn. 

Whenever W± exist, they are complete. 

Example. This continues the preceding example. Suppose for simplicity 

that &i and 62 axe nonzero and a ^ /3. Then the M0ller wave operators 

(1.3) exist if and only if max{a,/3} + e > 1/2 by Theorem 1.2. Ozawa [13] 

and Jensen-Ozawa [9] have already established a non-existence results for 

the M0ller wave operators for a related class of potentials but by different 

methods. 

Remark. In the case n = 1 the modifier depends only on time so that 
eiXD{t) = e%x(t) commutes with all operators. In particular, for any u € L2(Rn) 

\e-itH0-iX(t)u(xy2 = | e - ä t f o u ( a . ) | 2 
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which says that the position probability density of any free state is the same 

whether one uses the modified evolution or the usual free evolution. The same 

is true for the momentum probability density or any other observable in place 

of position or momentum. Therefore although the M0ller wave operators 

W± do not exist the modified and free evolutions are indistinguishable by 

any quantum mechanical observable. It is therefore not surprising that in 

classical mechanics the usual wave operators exist as was observed by Jensen 

and Ozawa [9]. In general, for n > 1 the modifier is nontrivial. If however 

one further assumes 

DaVL(x) = 0((1 + |x|)~a-€ for |a| < 1 (1.7) 

(e > 0) then again one can replace X(£, i) by a different modifier depending 

only on time (see Theorem 3.1 below) and which therefore cannot be observed. 

This last result is due to G.M. Graf [6] who assumed simply (1.7). Thus he 

requires less smoothness but more decay than here. He remarks that from 

the perspective of the Heisenberg picture of quantum mechanics there is no 

difference between quantum and classical mechanics in this setting. Graf uses 

Mourre's method. 

In the remaining two Sections we outline the construction of 0± for the 

proof of Theorem 1.1 (in §2). In §3 the proof of completeness in Theorem 

1.2 is given; the remaining conclusions of Theorem 1.2 are standard and their 

proofs are only outlined. 

2 Completeness of WQ. 

In this Section we outline the construction of the operators J* of (1.5) or, 

more precisely, the phase terms 0± as required for the proof of Theorem 1.1. 

In the process we indicate some key steps of the proof of Theorem 1.1 but 

our primary goal is to establish the properties of 9± required for the proof of 

Theorem 1.2 in §3. A detailed proof of Theorem 1.1 is given in [15]. 

The construction of 6± is as follows. It suffices to consider 0+; the construc­

tion of 9" is similar and in fact 0~(x,£) = — 0+(x, — f) . Choose xi € C°°(R) 

so that 

Xi(*i) = 
1 if xi > 3 

0 if xi < 1 
(2.1) 

The proof of Theorem 1.1 is based on the Enss method [4] in a two Hilbert 

space setting. One begins therefore with Cook's argument and so the key is 

to prove that the operator norm of {d/dt)eÜHJ+e~xtHoxi{D\) is an integrable 

function of t > 1, where D\ = —id/dxi so that Xi(^i) niaps onto "outgoing 

states." The free evolution on outgoing states e ' ^ ^ X i ^ i ) can be estimated 
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