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RADIATION CONDITIONS AND SCATTERING THEORY 
FOR THREE-PARTICLE HAMILTONIANS 

D.Yafaev 

1. I N T R O D U C T I O N 

One of the main problems of scattering theory is a description of asymp
totic behaviour of N interacting quantum particles for large times. The com
plete classification of all possible asymptotics (channels of scattering) is called 
asymptotic completeness. The final result can easily be formulated in physics 
terms. Two particles can either form a bound state or are asymptotically free. 
In case N > 3 a system of N particles can also be decomposed asymptotically 
into its subsystems (clusters). Particles of the same cluster form a bound 
state and different clusters do not interact with each other. 

There are two essentially different approaches to a proof of asymptotic 
completeness for multiparticle (N > 3) quantum systems. The first of them, 
started by L. D. Faddeev [1], relies on the detailed study of a set of equations 
derived by him for the resolvent of the corresponding Hamiltonian. This ap
proach was developped in [1] for the case of three particles and was further 
elaborated in [2, 3]. The a t tempts [4, 5] towards a straightforward general
ization of Faddeev's method to an arbitrary number of particles meet with 
numerous difficulties. However, the results of [6] for weak interactions are 
quite elementary. 

Another approach relies on the commutator method [7] of T. Kato. In 
the theory of N-particle scattering it was introduced by R. Lavine [8, 9] for 
repulsive potentials. A proof of asymptotic completeness in the general case is 
much more complicated and is due to I. Sigal and A. SofFer [10]. In the recent 
paper [11] G. M. Graf gave an accurate proof of asymptotic completeness 
in the time-dependent framework. The distinguishing feature of [11] is that 
all intermediary results are also purely time-dependent and most of them 
have a direct classical interpretation. Papers [10, 11] were to a large extent 
inspired by V. Enss (see e.g. [12]) who was the first to apply a time-dependent 
technique for the proof of asymptotic completeness. 
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The aim of the present paper is to give an elementary proof of asymp
totic completeness (for the precise statement, see section 2) for three-particle 
Hamiltonians with short-range potentials which fits into the theory of smooth 
perturbations [7, 13]. Our approach admits a straightforward generalization 
to an arbitrary number of particles. This will be discussed elsewhere. Our 
proof of asymptotic completeness relies on new estimates which establish some 
kind of radiation conditions for three-particle systems. Compared to the lim
iting absorption principle (see below) radiation conditions-estimates give us 
an additional information on the asymptotic behaviour of a quantum system 
for large distances or large times. Limiting absorption principle suffices for 
a proof of asymptotic completeness in case of two-particle Hamiltonians with 
short-range potentials. However, radiation conditions-estimates are crucial in 
scattering for long-range potentials (see e.g. [14]), in scattering by unbounded 
obstacles [15, 16] and in scattering for anisotropically decreasing potentials 
[17]. In the lat ter paper the role of radiation conditions was also advocated 
for three-particle Hamiltonians. Our proof of radiation conditions-estimates 
hinges on the commutator method rather than the integration-by-parts ma
chinery used in the two-particle case (see e.g. [14]). 

Our interpretation of radiation conditions is, of course, different from the 
two-particle case. Before discussing their precise form let us introduce the gen
eralized three-particle Hamiltonians. We consider the self-adjoint Schrôdinger 
operator H — —A + V(x) in the Hilbert space 7i = jC2(Rd). Suppose that 
some finite number o?o of subspaces Xa of X := Rd is given and let rca, xa be 
the orthogonal projections of x G X on Xa and Xa = X Q Xay respectively. 
We assume tha t 

V(x) = 
sfs 

fsf 
Va{xa), (1.1) 

where Va are decreasing real functions of variables xa. We prove asymptotic 
completeness under the assumption tha t Va are short-range functions of xa 
but many intermediary results (in particular, radiation conditions-estimates) 
are as well t rue for long-range potentials. Clearly, Va(xa) tends to zero as 
\x\ —• oo outside of any conical neighbourhood of XQ and Va(xa) is constant 
on planes parallel to Xa. Due to this property the structure of the spectrum 
of H is much more complicated than in the two-particle case. Operators 
H considered here were introduced in [18] and are natural generalizations of 
iV-particle Hamiltonians. We further assume tha t 

Xar\Xp = {0}, a^0, (1.2) 

so tha t regions where different Va "live" have compact intersection (for po
tentials of compact support) . For the Schrodinger operator this is t rue only 
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for the case of three particles. Thus the assumption (1.2) distinguishes the 
three-particle problem. 

Our proof of asymptotic completeness requires only the "angular par t" of 
radiation conditions. Let (•,•) be the scalar product in the space <Fd and let 

ADS< 
V w u ( x ) = Vu(ar) - \GDx\~2(Vu(x),x)x, 1.3 

be the projection of the gradient V on the plane, orthogonal to x. Denote by 
Xo the characteristic function of any closed cone To such tha t To fl Xa = {0} 
for all a. We prove tha t the operator 

Go = Xo(N JL+ lJJJM)-1/2V« (1.4) 

is locally (away from thresholds and eigenvalues of H) //"-smooth (in the sense 
of T. Kato - see e.g. [19]). In neighbourhoods of Xa we have only a weaker 
result. Namely, let VXa be the gradient in the variable xQ (i.e. VXau is the 
orthogonal projection of Vw on Xa)y 

Vxs}u(x) = VXau(x) - \xa\-2{VXauP7OCC{x),xa)xa (1.5) 

and let Xa be the characteristic function of such a closed cone Ta tha t Ta fl 
Xp = {0} for all /3 =fi a. Then the operator 

<2. = X„(W + l )-1/aVW (1.6) 

is locally J9"-smooth. A definition of i7-smoothness of the operators Go and 
GQC can be given either in terms of the resolvent of the operator H or of its 
unitary group U(t) = exp(-iHt). In both versions results are formulated as 
certain estimates which we call radiation conditions-estimates. 

Our proof in section 3 of if-smoothness of the operators Go and Ga is based 
on consideration of the commutator [Hy M] := HM — MH, where M is a self-
adjoint first-order differential operator with bounded coefficients. We find 
an operator M such tha t i[H, M] is essentially bounded from below by GQGO 

and GaGa- Here we take into account that certain terms, those vanishing as 
0(\x\~p),p > 1, at infinity, are negligible. This is a consequence of local H-
smoothness of the operator (|rr| + l ) ~ r , r > 1/2, (limiting absorption principle) 
which, in turn , is ensured by the Mourre estimate [20, 21 , 22]. We emphasize 
that all our considerations are localized in energy. 

The if-smoothness of the operators Go and Ga suffices for the proof in 
section 4 of existence of suitable wave operators ( bo th "direct" and "inverse") 
with non-trivial identifications which are first-order differential operators. The 
sum of these identifications equals M, which allows us to find the asymptotics 
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of MU(t)f for large t. Since the limit M± as t —> ± 0 0 of the observable 
U*(t) M U(t) also exists, this gives the asymptotics of the function U(t)f for 
/ from the range of the operator M±. Using again the Mourre estimate, we 
prove (also in section 4) tha t actually this range coincides with the whole 
absolutely continuous subspace of the Hamiltonian H. Finally, in section 5 
we conclude our proof of asymptotic completeness. 

2. B A S I C N O T I O N S O F S C A T T E R I N G T H E O R Y 

Let us briefly recall some basic definitions of the scattering theory. For a self-
adjoint operator i f in a Hilbert space Ti we introduce the following standard 
notation: V(H) is its domain; <r(H) is its spectrum; E(Q] H) is the spectral 
projection of H corresponding to a Borel set Q C R ; H^ac\H) is the absolutely 
continuous subspace of if; p(ac\H) is the orthogonal projection on WSac\H)] 
Ti^p\H) is the subspace spanned by all eigenvectors of the operator H] a^p\H) 
is the spectrum of the restriction of H on H^P\H)^ i.e. a^p\H) is the closure 
of the set of all eigenvalues of H. Norms of vectors and operators in different 
spaces are denoted by the same symbol || • ||; I is always the identity operator; 
B and /Coo are the classes of bounded and compact operators (in different 
spaces) respectively; C and c are positive constants whose precise values are 
of no importance; "s — l im" means the strong operator limit. Note tha t 

s — lim 
|<|->oc 

Kexp(-iHt)P{ac\YUIH) = 0, if K e /Coo. (2.1) 

Let K be i f -bounded operator, acting from T~L into, possibly, another 
Hilbert space W. It is called H-smooth (in the sense of T. Kato) on a Borel 
set Q C R if for every / = E(fy H)f € V(H) 

roo 
J—00 

||XeOxpKIIM(-z^)/l|2^<C||/H2-

Obviously, BK is i f -smooth on £1 if K has this property and B 6 B. 

Let now Hj, j = 1,2, be a couple of self-adjoint operators and let J be 
a bounded operator in a Hilbert space 7i. The wave operator for the pair 
# 1 , ^ 2 and the "identification" J is defined by the relation 

W±(H2,Hl] J) = s - hIUOm^exp^^PIPPJexpi-iH^P^iH^ (2.2) 

under the assumption that this limit exists. We emphasize tha t all definitions 
and considerations for " + " and " — " are independent of each other. It 
suffices to verify existence of the limit (2.2) on some set dense in 7i. If the 
wave operator (2.2) exists, then the intertwining property 

^($2)^(^2,^15 J) = W^H^Hv, J)Ex{Çi) (2.3) 
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