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ON NONLINEAR SCATTERING OF STATES 
WHICH ARE CLOSE TO A SOLITON 

V.S.Buslaev and G.S.Perelman 

1 So l i tons 

Consider the nonlinear Schroedinger equation 

(1.1) tyt = -V>x* + F{\^\2)^, ip = V>(*, t) e C, 

t e R. Assume that 
i)F is a given smooth (e C°°) real function bounded from below, 
ii)the point £ = 0 is a (sufficiently strong) root of the function F: 

(1.2) F(0 = F1?(l + O(0),P>0. 

Further consider the function 

(1.3; U(<l>,a) 
1 

8 
A 2 

1 

2 

r<t>2 
F(ê)d£. 

If a / 0 this function is negative for sufficiently small 0. The next assumption 
on F will be given in a sligtly implicit, but absolutely elementary form: 
iii)for a from some interval, a G A c R+, the function 0 —* J7(0,a) has a 
positive root; if <f>o(= (/>o(ot)) is the smallest positive root then U^^o^a) > 0. 

Under all these assumptions there exists the unique even positive solution 
y —> <p{y) of the equation 

(1.4) 4>yy = -Uà = 
1 
4 

a2<f> + F(<t>2)<p 

vanishing at infinity. More precisely 

(1.5) <f> = <j>(y\a) ~ <j)ooexp( 
1 
2 

aik/D,?/ oo. 

The following functions of x can be called the soliton states: 

(1.6) w(x\a) — exp -i/3 + i 
1 

2 
•vx)(/>(x — 6|a), 
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here 
(1.7) er = (ß,üJ,b,v),u> = 

r 
4 

[v2 - a2), 

/3,w,i) , t ;GR,aG A. The set of the allowable a will be denoted by E. If a is 
a solution of the Hamiltonian system: 

(1.8) 0/ = U;,Ü/ = O,&' = v y = 0. 

the function w(a;|cr(£)) is a solution of the equation (1.1) called the soliton. 

2 The linearization of equation (1.1) 

Consider the linearization of the equation (1.1) on the soliton w(x\a(t)): 

(2.1) iXt = -Xxx + F(\w\2)x + F'(\w\2)w(wx + wx). 

Instead of x introduce the function / : 

(2.2) y(x,t) = exp(m f(y,t),$ = -3(t) 
1 

E 
vx,y — x — b(t). 

The function / obeys the following equation: 

(2.3) ift = L(a)f, 

where 

(2.4) L(ot)f = -fm + 
1 

4 
a'f + F^f + F'i^if + f), 

0 = <p(y\a). Equation (2.3) is only a real-linear equation. Introduce its com 
nlexifìr.ation: 

(2.5) ift = H(a)fJ= f 
f 

(2.6) H(a) = Htt(a) + V(a),Ha(a) = -dl 
1 

4 
a2)cr3, 

(2.7) V(a) = \F((t>2) + F'{4?)4?] as + îF'(02)02a2, 

02,0z are the standard Pauli matrices: 

(2.8) 02 = 
0 
i 

—i 
0 

,<73 = 
1 
0 

0 
- 1 
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3 Properties of the operator H{a) 

The operator H(a) can be treated as a linear operator in L»2(R —> C2). Define 
it on the domain where H0(a) is self-adjoint. It possesses the properties: 

(3.1) a3H = H*a3,a2H = -H*a2,aiH = -Hav 

As a result the spectrum of H is invariant with respect to the following 
transformations: E —> E,E —> —E. 

The continuous spectrum consists of two half-axis [2?o, oo) and (—00, — 2?o], 
£0 = \ot2- Its multiplicity is equal to 2. 

Owing to the exponential decay of the potential term V(a) at infinity the 
discrete spectrum of H(a) contains only a finite number of eigenvalues and 
the corresponding root subspaces have only finite dimension. 

The point E — 0 is always a point of the discrete spectrum. One can 
indicate two eioen functions 

(3.2) 6 = U] , 6 = 
3̂ 

u3 1 

where 
(3.3) ux = -i<b(y\a),uz = -(f)y, 

and two adjoint functions: 

(3.4) 6 = 
«2 
u2 

Ì4 = 
7/>i 
г¿4 

where 
(3.5) 2̂ = 

2 

a Фа, Щ 
2 
9 JÓ. 

They obey the relations: 

(3.6) Hb = Hb = 0, Hb = ib, НЬ = гб. 
Actually, the spectrum of H(a) can lie only in the real axis and in the imag
inary axis of the S-plane, see [Wc2], for example. It is known also that the 
spectrum of H(a) is real and the root subspace corresponding to the point 
E — 0 is generated by the vectors ^1,̂ 2,̂ 3,̂ 4 if and only if 
(3.7) daUW2 > 0-

Consider the resolvent R(E) = (H — E)~l. Its kernel R(y,y'\E) is an 
analytic function in the extended £-plane: it admits an analytic continuation 
through the continuous spectrum as a meromorphic function. The resolvent 
kernel goes to infinity when E tends to the branch points =p2?o if the equation 
H(a)ip — T^oty, treated as a differential equation, has nontrivial solutions 
bounded at infinity. In this case the points =f£?o will be called resonances. 
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4 Nonlinear equation 

Consider the Cauchy problem for equation (1.1) with the initial data 

(4.1) гЬ(х.О) = гЬп(х). 

where tpo € H1, H1 is the standard Sobolev space with the norm: 

(4.2) \\f\\h = 11/111+ ll/'lli-

The problem has a solution ip = ip(x,t) which belongs to H1 with respect to 
x for each t, moreover ip e C(R —• Hl) . Any such solution ij) obeys two 
conservation laws: 

(4.3) J t)\2dx = const, f[\Mx,t)\2 + u(Wx,t)\). dx = const, 

where U is the function (1.3). The second formula (4.3) leads to the following 
estimate: 
(4.4) \\ФЫ)\\ю<с(\Ш\ю)\Ш\ю, 
here c = R+ —> R+ is a smooth function. If in addition ^ has the finite norm: 
||(1 + |x|)^o||2 < °°, the solution ip also has the finite , but growing in time, 
similar norm: 

(4.5) ||(1 + |x|№(x,*)||2 < c(\\1h>\\h*) [||(1 + M M k + t\\M\m]. 

5 T h e o r e m 

Let cr0 = (ßo,uo,bo,vo) G ,^0 = î 
4 

(v2 - a£). Consider the Cauchy problem 
for equation (1.1) with the initial data: 

(5.1) rß0(x) =w(x\a0) + Xo(x). 

Our aim is to describe the asymptotic behavior of the solution ip as t —> oo. 
Assume that: 
T1) the norm 
(5.2) JV=||(l+a;2)Xo||2+||Xoll2 

is sufficiently small; 
T2) E = 0 is the only point of the discrete spectrum of H(ao) and the dimension 
of the corresponding root subspace is equal to 4; 
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