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The homogeneous Monge-Ampere 
equation on a pseudoconvex domain 

Victor Guillemin* 

§ 1 . Introduct ion 

Let X be a compact complex n-dimensional manifold with a smooth str ict ly-pseudoconvex 

boundary. Wi thou t loss of generality one can assume that X sits inside an open complex 

manifold, Z. A smooth function, (j) : Z — • R, is a defining function o f X if it has the 

property: 

<£(p) < l p e x 

and if it has no critical points on the boundary. There are an infinity of different ways of 

choosing such a defining function, and it is a problem of considerable interest in the theory of 

pseudoconvex domains to find ways of making canonical choices. Jack Lee proved a result in his 

thesis which sheds some light on this problem: Suppose all the data above are real-analytic. 

Let S be the boundary of X and let T —• S be the bundle of outward-pointing conormal 

vectors to 5 . Given a real-analytic section, ¡1 : S — • T, Lee proved that there exists a unique 

real-analytic defining function, <j>, which satisfies the boundary condit ion, d<f> = fi on 5 and 

satisfies the homogeneous Monge-Ampere equation 

(1 .1) (dd<f>)n = o 

on a ne ighborhood of S* One of the aims of this paper is to give a new p roo f o f this result. 

This p roof is similar to a proof that Matt Stenzel and I gave of an existence theorem for Monge-

A m p e r e with a different set of boundary conditions in [ G 5 ] i . I will give a brief description of 

this p roo f below; however, first I want to describe the other main result of this paper. Let 

X b e a compac t Riemannian manifold. Suppose that X is real-analytic, and suppose that 

/ : X — • R is a real-analytic function. Several years ago Boutet de Monvel proved the 

following surprising result: 

T h e o r e m . [B] The following are equivalent 

1. / can be extended holomorphically to a Grauert tube of radius r about X. 

2. The wave equation 

du 

dt 
• = y/Äu, u(x,0) = f(x) 

*Supported by NSF grant DMS 890771 

*See [L]. Subsequently Jerison and Lee [JL] showed that there is a canonical way of choosing fi as well 

(by solving a C R variant of the Yamabe problem). 
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can be solved backwards in time over the interval — r < t < 0 . 

In other words Boutet ' s result says that the problem of extending / to a small neighbor

h o o d o f X inside the complexification, XQ, is equivalent to solving a diffusion p rob lem in the 

wrong direction! Mat t Stenzel and I showed in [GS]2 that this result has some interesting 

connect ions with homogeneous Monge-Ampere . In this paper I will show that there is a form 

of Boute t ' s result which is true for an arbitrary real-analytic pseudoconvex domain; and this, 

t o o , will involve homogeneous Monge-Ampere in a fundamental way. T h e statement and proof 

of this result will be given in §5 and I will give my new proof of Lee's theorem in §4. As in 

[GSh the main step in this p roof will be the complexification of a solution o f a certain real 

M o n g e - A m p e r e equation which I now want to describe: Let X and Y b e real n-dimensional 

manifolds and consider the D e R h a m complex on X x Y. By the Kunneth theorem this complex 

is a double complex with an exterior derivative, e? x, that only involves the X-var iables and 

an exterior derivative, dy, that only involves the F-variables. In particular, given a function, 

<j) = <^(x,y) , o n l x F one gets a two-form, dxdy<j), and, wedging this form with itself n times, 

a 2n-form, (dxdy<j))n. Now let 5 be a hypersurface in X x Y and <J)Q a defining function for it. 

Suppose that (f>0 satisfies: 

(1.2) (dxdy<t>0)n 1 A dx(f)Q A dy(/)Q ^ 0 

on a ne ighborhood of 5.* I will prove in §2 that, on every sufficiently small ne ighborhood of 

5 , there exists a unique function, <j>, such that <t> — </>o vanishes to second order on S and 

(1 .3) (dXdy<t>)n = 0. 

In other words given a surface, 5 , with the convexity property, (1 .2 ) , the Cauchy problem 

for ( 1 . 3 ) , with initial data on 5 , can always be solved in a ne ighborhood of 5 . T h e p roof will 

involve some ideas that have come up earlier in the work of Phong and Stein, [PS] , and in my 

own work with Sternberg ( [GS] , Chapter 6) on Radon integral transforms; and I will explain 

what M o n g e - A m p e r e has to do with this subject in §2-3. 

T o conclude I would like to mention a number of recent articles on homogeneous Monge-

A m p e r e dealing with issues that I've touched on here. These are, in addit ion to my two 

articles with Stenzel cited above, the article, [EM] , o f Epstein-Melrose and the articles, [LS] 

of Lempert-Szoke, [S] of Szoke and [Lem] of Lempert. In particular, in Lemper t ' s article, 

it is shown that for the Monge-Ampere problem discussed in [ G 5 ] i , [GS]2 the analyticity 

assumptions are necessary as well as sufficient. 

§2. D o u b l e fibrations. 

*This condition depends only on 5 not on the choice of <f>o. It is the analogue in this "Kiinneth" theory 
of the Levi condition. 
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THE HOMOGENEOUS MONGE-AMPÈRE EQUATION 

Let X and Y be n-dimensional manifolds and S a closed (2n — 1)-dimensional submanifold 

o f X x Y. Let 7T and p be the restrictions to S of the project ion maps of X x Y on to X and K 

T h e triple ( S , 7r, /0) is called a double fibration if bo th 7r and p are fiber mappings. I will assume 

that the conormal bundle of S is oriented and will denote by T the set o f its positively-oriented 

vectors. Compos ing the inclusion, T —• T*(X x F ) , with the project ions o f T * ( X x Y) and 

T*X and T*Y one gets maps 

(2 .1) 7T! : r — * T 0 *X and P l : r —> T0*F 

of T on to the punctured cotangent bundles of X and Y* The data, ( 5 , 7 r , p), are said to satisfy 

the Bolker condit ion if TTI and pi are diffeomorphisms, in which case the compos i te mapping, 

pi o TTT1 is well-defined. Compos ing this mapping with the involution: 

a: T ; Y ^ T ; Y , <r(y,ti) = (y,-T,) 

one gets a canonical transformation 

(2 .2) 7 : T;X —> T;Y 

which I will call the canonical transformation associated with the double fibration ( 5 , 7 r , p ) . 

T o check that the Bolker condition is satisfied, one has to check first that TTI and p\ are 

diffeomorphisms locally in the neighborhood of each point of T, and then check that they are 

one-one and onto . Often the second criterion is implied by the first. (This is so, for instance, 

if bo th X and Y are compac t . ) As for the first criterion, it is easy to see that if TTI is locally a 

diffeomorphism at a point of T, p\ is as well. This criterion can also b e checked rather easily 

by the following means. Let 0 = <j>(x,y) be a defining function of S i.e. let S b e the subset 

of X x Y defined by the equation, <j>(x,y) — 1; and assume dcj)p ^ 0 at all points, p £ 5. Let 

dxdv<t> be the two-form 
n 

E t,y=\ 

d2é 

dxidyi 
-dxx A dyj 

L e m m a . For wi and pi to be local diffeomorphisms at all points of T it is necessary and 

sufficient that the 2n-form 

(2 .3) {djcdyd))1*'1 A dj-eAdyCp 

be non-vanishing on a neighborhood of S. 

I will leave the proof of this as an easy exercise. M y goal in this section is to prove that if 

S satisfies the Bolker condit ion it has a defining function which satisfies, in addition to (2 .3) , 

the homogeneous Monge-Ampere equation described in the introduction: 

*Given a manifold, M, we will denote by T 0 *(M) the cotangent bundle of M with its zero section deleted. 
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T h e o r e m 1. Let /i : S • V be a section ofT. Then there exists a unique defining function, 

<j>, of S such that 

(2 .4) (dxdy<p)n = 0 

on a neighborhood of S,* and such that, in addition, d(j)p = pp at all points, p G 5 . 

Proof. Existence: There exists a unique homogeneous function of degree one on T which 

is identically equal to one on the image of p. Lets denote this function by HQ. Under the 

diffeomorphism T 0 *X — • T this pulls back to a homogeneous function of degree one, H, on 

TQX. Since ( 5 , 7 r , p) is a double fibration the fibers, Sy = p~1(y), above points o f Y are (n — 1)-

dimensional submanifolds of X. Now, with y fixed, solve the Hamilton-Jacobi equation: 

(2 .5 ) H{d<j>) = H ( X , 
oQ 
ds , . . . , 

d<j> 

dxn ) = 1 

with the initial condit ion (j) = 1 on S y . * This solution depends parametrically on y so it 

is really a function, <t> = <j)(x,y), of both the x and the y variables and is well-defined in 

a ne ighborhood , U, of 5. Let 's show that it satisfies the Monge-Ampere equation and the 

required initial condit ions. That it satisfies the initial conditions is equivalent to the assertion 

that Ho(d<j>) — 1 on S and this is equivalent to the assertion that, for y fixed, the equation 

H(d(j>) = 1 holds on X. T o check that <j> satisfies Monge-Ampere , we note that because H 

doesn' t depend on y we can differentiate the identify 

H 
( d<t> 

dr ,....., 
d(t> 

drn ,x ) = 1 

with respect to yi getting: 
n 

E 
0=1 

dB_ 

di3 

[dx(j), x) 
d2<t> 

dxjdyi 
= 0 

Since dH 
26 

(x,£) ^ 0 when <f 0 this implies that 

det ( d2<t> 

dx,dyj ) = 0. 

Uniqueness: Let <p be a defining function of S satisfying the given initial condit ions. By 

assumption the m a p 

7T! : S x R + — • T^X 

*In local coordinates this is just the Monge-Ampere equation det ( 
d26 

dy ; ) = 0. 
*Let's briefly review how this is done. The equation, H = 1, cuts out a hypersurface in the conormal 

bundle of Sy. This hypersurface is an isotropic submanifold of T*X of dimension n — 1, so if we take its flow-out 
with respect to the Hamiltonian flow, exptfE//, we get an n-dimensional Lagrangian submanifold, A, of T*X. 
In the vicinity of Sy A is the graph of an exact one form, d<f>, and if we normalize <t> to be one on Sy this 
determines it uniquely. 
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