Astérisque

CHRISTINE LAURENT-THIÉBAUT JÜRGEN LEITERER Uniform estimates for the Cauchy-Riemann equation on q-concave wedges

Astérisque, tome 217 (1993), p. 151-182 <http://www.numdam.org/item?id=AST 1993 217 151 0>

© Société mathématique de France, 1993, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

UNIFORM ESTIMATES FOR THE CAUCHY-RIEMANN EQUATION ON q-CONCAVE WEDGES

Christine LAURENT-THIÉBAUT and Jürgen LEITERER

- 0. Introduction
- 1. Preliminaries
- 2. Local q-concave wedges
- 3. A Leray map for local q-concave wedges
- 4. An integral formula in local q-concave wedges
- 5. Homotopy formula and solution of the $\overline{\partial}$ -equation in local q-concave wedges
- 6. Estimates
- 7. Globalisation

0. Introduction

This article is the continuation of [L-T/Le]. Both papers are preliminary works for a systematic study of the tangential Cauchy-Riemann equation on real submanifolds from the viewpoint of uniform estimates and by means of integral formulas. For this study we have to solve the Cauchy-Riemann equation with uniform estimates on q-convex and q-concave wedges in \mathbb{C}^n (for historical remarks, see the introduction to [L-T/Le]). Whereas [L-T/Le] is devoted to q-convex wedges, here we study q-concave wedges.

The main result of the present paper can be formulated as follows. Let $G \subseteq \mathbb{C}^n$ be a domain, q an integer with $1 \leq q \leq n-1$, and $\varphi_1, \ldots, \varphi_N$ a collection of real C^2 functions on G satisfying the following three conditions :

- (i) $E := \{ z \in G : \varphi_1(z) = \cdots = \varphi_N(z) = 0 \} \neq \emptyset ;$
- (ii) $d\varphi_1(z) \wedge \cdots \wedge d\varphi_N(z) \neq 0$ for all $z \in G$;
- (iii) If $\lambda = (\lambda_1, \dots, \lambda_N)$ is a collection of non-negative real numbers with $\lambda_1 + \dots + \lambda_N = 1$, then, at all points in G, the Levi form of the function

$$\lambda_1 \varphi_1 + \cdots + \lambda_N \varphi_N$$

has at least q+1 positive eigenvalues.

Set

$$D = \bigcap_{j=1}^{N} \{ z \in G : \varphi_j(z) > 0 \}$$
(0.1)

and

$$\Omega = \bigcup_{j=1}^{N} \{ z \in G \colon \varphi_j(z) > 0 \} .$$

$$(0.2)$$

Further, for $\xi \in \mathbb{C}^n$ and R > 0, we denote by $B_R(\xi)$ the open ball of radius R in \mathbb{C}^n centered at ξ . Then Theorems 5.6, 5.7 and 6.6 of the present work imply the following

0.1. THEOREM. — For each point $\xi \in E$ there exists a radius R > 0 such that :

- (a) If q−N ≥ 0, then each holomorphic function on D extends holomorphically to D ∪ B_R(ξ);
- (b) If $q-N \ge 1$ and f is a continuous $\overline{\partial}$ -closed (n, r)-form with $1 \le r \le q-N$ on D, then there exists a continuous (n, r-1)-form u on $D \cap B_R(\xi)$ with

$$\overline{\partial}u = f \quad \text{on} \quad D \cap B_R(\xi) \;. \tag{0.3}$$

Moreover if, for some β with $0 \leq \beta < 1$, f satisfies the estimate

$$\|f(\zeta)\| \leq [\operatorname{dist}(\zeta, \partial D)]^{-\beta}, \quad \zeta \in D, \tag{0.4}$$

then the solution u of (0.3) can be given by an explicit integral operator and, for all $\varepsilon > 0$, there is a constant $C_{\varepsilon} > 0$ (independent of f) such that :

If $0 \leq \beta < 1/2$, then u is Hölder continuous with exponent $1/2 - \beta - \varepsilon$ on $\overline{D \cap B_R(\xi)}$ and

$$\|u\|_{1/2-\beta-\varepsilon,\overline{D\cap B_R(\xi)}} \leq C_{\varepsilon} \sup_{\zeta \in D} \|f(\zeta)\| [\operatorname{dist}(\zeta,\partial D)]^{\beta}, \qquad (0.5)$$

where $\|\cdot\|_{1/2-\beta-\varepsilon,\overline{D\cap B_R(\xi)}}$ is the Hölder norm with exponent $1/2-\beta-\varepsilon$ on $\overline{D\cap B_R(\xi)}$. If $1/2 \leq \beta < 1$, then

$$\sup_{z \in D} \|u(z)\| [\operatorname{dist}(z, \partial D)]^{\beta - 1/2 + \varepsilon} \leq C_{\varepsilon} \sup_{\zeta \in D} \|f(\zeta)\| [\operatorname{dist}(\zeta, \partial D)]^{\beta} .$$
(0.6)

Note that the radius R and the constant C_{ε} in Theorem 0.1 depend continuously on $\varphi_1, \ldots, \varphi_N$ with respect to the C^2 topology.

Theorem 0.1 implies the following corollary for the domain Ω defined by (0.2) :

0.2. COROLLARY. — For each point $\xi \in E$ there exists a radius R > 0 such that :

- (i) If $q \ge 1$, then each holomorphic function on Ω extends holomorphically to $\Omega \cup B_R(\xi)$;
- (ii) If $q \ge 2$ and f is a continuous $\overline{\partial}$ -closed (n, r)-form with $1 \le r \le q-1$ on Ω , then there is a continuous (n, r-1)-form u on $\Omega \cap B_r(\xi)$ with

$$\partial u = f \quad \text{on} \quad \Omega \cap B_r(\xi) \;. \tag{0.7}$$

It is easy to see that, for r = 1, estimates (0.5) and (0.6) (with Ω instead of D) hold also in this corollary. We do not know whether this is true for $r \ge 2$.

For the smooth case (N = 1) Theorem 0.1 was obtained by Lieb [Li]. We prove Theorem 0.1 by means of integral formulas which are obtained combining the construction of Lieb [Li] with the construction of Range and Siu [R/S]. The main problem then consists in the proof of the estimates. Fortunately, in large parts, this proof is parallel to the corresponding proof in the *q*-convex case which is carried out in [L-T/Le]. Note that, in both proofs, an idea of Henkin plays a very important role (see the introduction to [L-T/Le]). Note also that in the survey article [He] of Henkin a global result, corresponding to the important special case $\beta = 0$, $\varepsilon = \frac{1}{2}$ of Theorem 0.1 is formulated (see [He] th. 8-12 d)).

Finally we want to compare our results with the work [G] of Grauert. He studied domains of type Ω defined by (0.2), where instead of condition (*iii*) the following stronger hypothesis is used :

(iii)' There is a fixed (q+1)-dimensional subspace T of \mathbb{C}^n such that, for all j = 1, ..., Nand $z \in G$, the Levi form φ_j is positive definite on T.

Under this hypothesis, Corollary 0.2 follows from Satz 1 in [G]. Note that the conclusion of Satz 1 in [G] is essentially stronger than the conclusion of our Corollary 0.2 : we can solve $\overline{\partial}u = f$ only on the smaller set $\Omega \cap B_r(\xi)$ if f is given on Ω , whereas Grauert proves the existence of a basis of Stein neighborhoods U of ξ such that, if f is given on $\Omega \cap U$, the equation $\overline{\partial}u = f$ can be solved on the same set $\Omega \cap U$. In the smooth case (N = 1) such a solution without shrinking of the domain is possible also with estimates as in Theorem 0.1 (see Theorem 14.1 in [He/Le 2]). On the other hand, it is not clear whether one can solve (even without estimates) the $\overline{\partial}$ -equation without shrinking of the domain in the situation of Theorem 0.1 if $N \ge 2$. Note also that the statement of Theorem 0.1 under the stronger condition (*iii*)' and without estimates and with shrinking of the domain can be obtained also from Satz 1 in [G].

1. Preliminaries

1.1. — For $z \in \mathbb{C}^n$ we denote by z_1, \ldots, z_n the canonical complex coordinates of z. We write $\langle z, w \rangle = z_1 w_1 + \cdots + z_n w_n$ and $|z| = \langle z, z \rangle^{1/2}$ for $z, w \in \mathbb{C}^n$.

1.2. Let M be a closed real C^1 submanifold of a domain $\Omega \subseteq \mathbb{C}^n$, and let $\zeta \in M$. Then we denote by $T_{\zeta}^{\mathbb{C}}(M)$ the *complex*, and by $T_{\zeta}^{\mathbb{R}}(M)$ the *real* tangent space of M at ζ . We identify these spaces with subspaces of \mathbb{C}^n as follows : if ρ_1, \ldots, ρ_N are real C^1 functions in a neighborhood U_{ζ} of ζ such that $M \cap U = \{\rho_1 = \cdots = \rho_N = 0\}$ and

 $d\rho_1(\zeta) \wedge \cdots \wedge d\rho_N(\zeta) \neq 0$, then

$$T_{\zeta}^{\mathbf{C}}(M) = \left\{ t \in \mathbb{C}^{n} : \sum_{\nu=1}^{n} \frac{\partial \rho_{j}(\zeta)}{\partial \zeta_{\nu}} t_{\nu} = 0 \text{ for } j = 1, \dots, n \right\}$$

and

$$T^{\mathbf{R}}_{\zeta}(M) = \left\{ t \in \mathbb{C}^n : \sum_{\nu=1}^{2n} \frac{\partial \rho_j(\zeta)}{\partial x_{\nu}} x_{\nu}(t) = 0 \text{ for } j = 1, \dots, n \right\},$$

where x_1, \ldots, x_{2n} are the real coordinates on \mathbb{C}^n with $t_{\nu} = x_{\nu}(t) + ix_{\nu+n}(t)$ for $t \in \mathbb{C}^n$ and $\nu = 1, \ldots, n$.

1.3. — Let $\Omega \subseteq \mathbb{C}^n$ be a domain and ρ a real C^2 function on Ω . Then we denote by $L_{\rho}(\zeta)$ the Levi form of ρ at $\zeta \in \Omega$, and by $F_{\rho}(\cdot, \zeta)$ the Levi polynomial of ρ at $\zeta \in \Omega$, *i.e.*

$$L\rho(\zeta)t = \sum_{j,k=1}^{n} \frac{\partial^2 \rho(\zeta)}{\partial \overline{\zeta}_j \partial \zeta_k} \overline{t}_j t_k$$

 $\zeta \in \Omega, t \in \mathbb{C}^n$, and

$$F_{\rho}(z,\zeta) = 2\sum_{j=1}^{n} \frac{\partial \rho(\zeta)}{\partial \zeta_{j}} (\zeta_{j} - z_{j}) - \sum_{j,k=1}^{n} \frac{\partial^{2} \rho(\zeta)}{\partial \zeta_{j} \partial \zeta_{k}} (\zeta_{j} - z_{j}) (\zeta_{k} - z_{k})$$

 $\zeta \in \Omega$, $z \in \mathbb{C}^n$. Recall that by Taylor's theorem (see, e.g., Lemma 1.4.13 in [He/Le 1])

$$\operatorname{Re} F_{\rho}(z,\zeta) = \rho(\zeta) - \rho(z) + L_{\rho}(\zeta)(\zeta - z) + o(|\zeta - z|^2) .$$
(1.1)

1.4. — Let $J = (j_1, \ldots, j_\ell)$, $1 \le \ell < \infty$, be an ordered collection of elements in $\mathbb{N} \cup \{*\}$. Then we write $|J| = \ell$, $J(\hat{\nu}) = (j_1, \ldots, j_{\nu-1}, j_{\nu+1}, \ldots, j_\ell)$ for $\nu = 1, \ldots, \ell$, and $j \in J$ if $j \in \{j_1, \ldots, j_\ell\}$.

1.5. — Let $N \ge 1$ be an integer. Then we denote by P(N) the set of all ordered collections $K = (k_1, \ldots, k_\ell), \ell \ge 1$, of integers with $1 \le k_1, \ldots, k_\ell \le N$, and by P(N, *) the set of all ordered collections $K = (k_1, \ldots, k_\ell), \ell \ge 1$ such that either $K \in P(N)$ or for a $\nu \in \{1, \ldots, \ell\}, k_\nu = *$ and $K(\hat{\nu}) \in P(N)$ as well as K = (*). We call P'(N) the subset of all $K = (k_1, \ldots, k_\ell) \in P(N)$ with $k_1 < \cdots < k_\ell$ and P'(N, *) the subset of all $K = (k_1, \ldots, k_\ell) \in P(N)$ or $1 \le k_1 < \cdots < k_{\ell-1} \le N$ and $k_\ell = *, i.e.$ $K_{(\hat{\ell})} \in P'(N)$ and $K = K_{(\hat{\ell})}^*$, as well as K = (*).

1.6. Let $J = (j_1, \ldots, j_\ell)$, $1 \leq \ell < \infty$, be an ordered collection of integers with $0 \leq j_1 < \cdots < j_\ell$. Then we denote by Δ_J (or $\Delta_{j_1 \cdots j_\ell}$) the simplex of all sequences $\{\lambda_j\}_{j=0}^{\infty}$ of numbers $0 \leq \lambda_j \leq 1$ such that $\lambda_j = 0$ if $j \notin J$ and $\Sigma \lambda_j = 1$. We orient Δ_J by the form $d\lambda_{j_2} \wedge \cdots \wedge d\lambda_{j_\ell}$ if $\ell \geq 2$, and by +1 if $\ell = 1$.

Further Δ_{J*} (or $\Delta_{j_1\cdots j_\ell*}$) will be the simplex of all sequences $\{\lambda_j\}_{j=0}^{\infty} \cup \{\lambda_*\}$ of numbers $0 \leq \lambda_j \leq 1, 0 \leq \lambda_* \leq 1$ such that $\lambda_j = 0$ if $j \notin J$ and $\sum_{j=0}^{\infty} \lambda_j + \lambda_* = 1$. We orient Δ_{J*} by the form $d\lambda_{j_2} \wedge \cdots \wedge d\lambda_{j_\ell} \wedge d\lambda_*$.