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UNIFORM ESTIMATES FOR THE CAUCHY-RIEMANN 
EQUATION ON q-CONCAVE WEDGES 
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0. Introduction 

This article is the continuation of [L-T/Le]. Both papers are preliminary works for a 
systematic study of the tangential Cauchy-Riemann equation on real submanifolds from the 
viewpoint of uniform estimates and by means of integral formulas. For this study we have 
to solve the Cauchy-Riemann equation with uniform estimates on ^-convex and g-concave 
wedges in Cn (for historical remarks, see the introduction to [L-T/Le]). Whereas [L-T/Le] 
is devoted to g-convex wedges, here we study q-concave wedges. 

The main result of the present paper can be formulated as follows. Let G C Cn be a 
domain, q an integer with 1 < q ^ n— 1, and <p\,... , (pN a collection of real C2 functions 
on G satisfying the following three conditions : 

(i) E := { z G G : <px(z) = • • • = <pN(z) = 0 } ^ 0 ; 

(ii) d<pi(z) A • • • A d<pN(z) ± 0 for all z e G ; 

fiiij If A = (Ai,... , XN) is a collection of non-negative real numbers with Ai+- • +AJV = 1, 
then, at all points in G, the Levi form of the function 

\l<pi + • • • 4- \N<PN 

has at least g+1 positive eigenvalues. 
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Set 

D = 
N 

i=1 
{zeG: <pj(z)>0} (0.1) 

and 

M = 
N 

J = l 
[zeG: <pj(z)>0} . (0.2) 

Further, for £ e Cn and R > 0, we denote by BR(£) the open ball of radius R in 
Cn centered at £. Then Theorems 5.6, 5.7 and 6.6 of the present work imply the following 

0.1. THEOREM. — For each point £ e E there exists a radius R>0 such that : 
(a) Hq—N ^ 0, then each holomorphic function on D extends holomorphically to 

D U BR (E) ; 
(b) If q—N ^ 1 and f is a continuous d-closed (n, r)-form with 1 ^ r ^ q—N on D, 

then there exists a continuous (n^r—iyform u on D f] BR(£) with 
du = f on D fl BR(0 . (0.3) 

Moreover if, for some ft with 0 ^ ft < 1, / satisfies the estimate 

\\№\\<№K,dD)]-', ( 6 J 3 , (0.4) 

then the solution u of (0.3) can be given by an explicit integral operator and, for all 
€ > 0, there is a constant Ce > 0 (independent of f) such that : 

HO 
D fl BR(0 and 

^ ft < 1/2, then u is Holder continuous with exponent 1/2—ft—e on 

\\u n n n j n ^ Ce s 
CED 

| / ( 0 \\№(C,dD)]fi, (0.5) 

where \\ • H ^ - p - e Dr\BR(0 IS tne Holder norm with exponent 1/2—ft—e on D H BR(£). 

Hl/2^ft<\, then 

sup 
CED 

\u(z)\\[dist(z,dD)f-l/2+£ < C£ sup 
CED 

\\№\\№(C,dD)]fi . (0.6) 

Note that the radius R and the constant C£ in Theorem 0.1 depend continuously on 
<pi,... , (pw with respect to the C2 topology. 

Theorem 0.1 implies the following corollary for the domain £2 defined by (0.2) : 

0.2. COROLLARY. — For each point £ E E there exists a radius R > 0 such 
that : 

(i) If q ^ 1, then each holomorphic function on Q extends holomorphically to 
HUBr(0; 

(ii) If q^ 2 and f is a continuous d-closed (n, r)-form with 1 ^ r ^ q— 1 on fi, then 
there is a continuous (n, r—l)-form u on Qf\ Br(£) with 

du = f on flnBr(0- (0.7) 
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It is easy to see that, for r = 1, estimates (0.5) and (0.6) (with Q instead of D) hold 
also in this corollary. We do not know whether this is true for r ^ 2. 

For the smooth case (JV = 1) Theorem 0.1 was obtained by Lieb [Li]. We prove 
Theorem 0.1 by means of integral formulas which are obtained combining the construction of 
Lieb [Li] with the construction of Range and Siu [R/S]. The main problem then consists in the 
proof of the estimates. Fortunately, in large parts, this proof is parallel to the corresponding 
proof in the g-convex case which is carried out in [L-T/Le]. Note that, in both proofs, an 
idea of Henkin plays a very important role (see the introduction to [L-T/Le]). Note also that 
in the survey article [He] of Henkin a global result, corresponding to the important special 
case p = 0, e = \ of Theorem 0.1 is formulated (see [He] th. 8-12 d)). 

Finally we want to compare our results with the work [G] of Grauert. He studied 
domains of type Q defined by (0.2), where instead of condition (Hi) the following stronger 
hypothesis is used : 

(Hi)' There is a fixed (g+l)-dimensional subspace T of Cn such that, for all j = 1, . . . , N 
and z G G, the Levi form <pj is positive definite on T. 

Under this hypothesis, Corollary 0.2 follows from Satz 1 in [G]. Note that the 
conclusion of Satz 1 in [G] is essentially stronger than the conclusion of our Corollary 0.2 : 
we can solve du = f only on the smaller set fiC\Br(£) if / is given on ¿2, whereas Grauert 
proves the existence of a basis of Stein neighborhoods U of £ such that, if / is given on 
Q D U, the equation du = f can be solved on the same set Q D U. In the smooth case 
(N = 1) such a solution without shrinking of the domain is possible also with estimates as 
in Theorem 0.1 (see Theorem 14.1 in [He/Le 2]). On the other hand, it is not clear whether 
one can solve (even without estimates) the 9-equation without shrinking of the domain in 
the situation of Theorem 0.1 if N > 2. Note also that the statement of Theorem 0.1 under 
the stronger condition (Hi)' and without estimates and with shrinking of the domain can be 
obtained also from Satz 1 in [G]. 

1. Preliminaries 

1.1. — For z 6 Cn we denote by z\,... , zn the canonical complex coordinates of 
z. We write (z, w) = z\W\ + • • • + znwn and \z\ = (z, z)ll2 for z) w G Cn. 

1.2. — Let M be a closed real C1 submanifold of a domain (] C Cn, and let 
C G M. Then we denote by Tf(M) the complex, and by T*(M) the real tangent space of 
M at C- We identify these spaces with subspaces of Cn as follows : if p\,... , PN are real 
C1 functions in a neighborhood U( of C such that M C\U = {p\ = • • • = PN = 0} and 
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d/>i(C)A-AdpAr(C)#0, then 

T (M) = {T e C" : 
n 

I/=l 

dpj(0 
aCv 

= 0 for j = 1, . . . , Tl } 

and 
T R 

c (M) = {t E Cn: 
2n 

v=1 

««(C) 
dxv 

xv(t) = 0 for j = 1, . . . ,n }, 

where a?i,... , a?2n are the real coordinates on Cn with tv = xv{t)-\-ixv+n{t) for t € Cn and 
z/ = 1, . . . ,n. 

1.3. — Let Q C Cn be a domain and /> a real C2 function on fi. Then we denote 
by Lp(0 the Levi form of p at C G fi, and by Fp( •, O the Levi polynomial of p at C € £2, 
i.e. 

M O * = 
n 

j,k=1 

a2 p(C) 
aCjaCk 

tjtk 

C G ft, T € Cn, and 

F,(*,C) = 2 
n 

j=1 

a p(C) 

aCj 
Cj - zj) -

n 

j;k=1 

a2 p(C) 

aCjaCk) (0 - *iXCb - **) 

< G ft, : G C " . Recall that by Taylor's theorem (see, e.g., Lemma 1.4.13 in [He/Le 1]) 

ReF,(z,C) = ( * 0 - + L,(CXC-*) + oflC-*|2) . (1.1) 

1.4. — Let J = (ji ? • • • > 1 ^ £ < oo, be an ordered collection of elements in 
N U {*}. Then we write \ J\ = £, J(p) = (Ju>- , jv-u J»+u• • • Ji) for 1/ = 1, . . . , 1 , and 
jZJifje { j i , . . . 

1.5. — Let JV ^ 1 be an integer. Then we denote by P(N) the set of all ordered 
collections K ={k\,... , Jb/), £ ^ 1, of integers with 1 < A?i,... , ib/ < iV, and by P(iV,*) 
the set of all ordered collections K = ... , kt\ £ > 1 such that either K e -P(N) or 
for a i/ £ { 1 , . . . ,£}, hv = * and iiT(z>) € P(N) as well as # = (*). We call Pf(N) the 
subset of all K = (Jbi,... , ki)tP(N) with Jbi < • • • < kt and P'(JV, *) the subset of all 
# = (Ari,... , ki) where either K € P'(N) or 1 ^ ibi < • • • < kt_i ^ N and kt = *, i.e. 
K(l) € P'(N) and # = fftf)*f as well as K = (*). 

1.6. — Let J = 0i>--- 1 < ^ < oo, be an ordered collection of integers 
with 0 < j i < • • • < j / . Then we denote by A j (or Ajv..jt) the simplex of all sequences 
{ Xj }£L0 of numbers 0 < Aj < 1 such that Aj = 0 if j £ J and £Aj = 1. We orient Aj 
by the form dXh A • • A dAj, if £ > 2, and by +1 if £ = 1. 

Further Aj* (or A^..^*) will be the simplex of all sequences { Aj } oo J=0 U{A,} of 

numbers 0 < Aj < 1, 0 < A* < 1 such that Aj = 0 if j £ J and oo 

3=0 
Aj+A* = 1. We orient 

Aj* by the form dXj2 A • • • A dAj, A dX*. 

154 


