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O N T H E E N V E L O P E S OF H O L O M O R P H Y O F 

S T R I C T L Y L E V I - C O N V E X H Y P E R S U R F A C E S 

Guido L U P A C C I O L U 

I N T R O D U C T I O N 

We shall be concerned with the subject of holomorphic continuation of 
CiMunct ions from a relatively open part of the boundary of a strongly pseu-
doconvex domain. 

Let M be a Stein manifold of dimension n > 2 , i ? C C M a C2-bounded 
strongly pseudoconvex domain and K a proper closed subset of the boundary 
bD of D. 

It is well-known that , due to the strict Levi-convexity of bD \ K, there 
exists an open set U C -D, having bD \ K as a part of its boundary, such tha t 
every continuous CR-function on bD \ K has a unique continuous extension 
to (bD\K)UU which is holomorphic on U. The existence of U is referred to 
as the H. Lewy's extension phenomenon. 

More recents results yield sharper information on U; in particular it has 
been shown that the open set D \ K-p (KJJ = 0(D)-h.\i\l of A") is such a U 
with the mentioned features (see [11, 6] and the references therein). 

For n = 2 it is also known that D \ K-Q has another independent property: 
it is pseudoconvex (see [8, 9, 10]). This, combined with the above, implies at 
once the following noteworthy result: 

(J) For n = 2 the envelope of holomorphy of bD\K is D \ KJJ. 

Remark. Here above and throughout the continuation we speak of en
velopes of holomorphy of non-open subsets of M. We recall tha t in general 
the envelope of holomorphy E(S) of an arbitrary subset S of a Stein man
ifold can be given a precise definition as the union of the components of 
S = spec(0(S)) which meet S (see [5]). However, in the case of our concern 
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where 5 = bD \ K, for the purposes of this paper the envelope of holomorphy 
may be simply understood as the disjoint union of bD \ K and the enve
lope of holomorphy E(U) of an open set U as specified above, regarded as a 
holomorphic extension of U. 

An immediate consequence of (J) is: 

(/)' For n = 2, in order that K be removable, in the sense that each con
tinuous CR-function f on bD \ K may have a continuous extension F G 
C°(D \ K) n 0(D), it is necessary and sufficient that K-^ = K, i.e. that K be 
(D(D)-convex. 

On the other hand, for n > 3 it is not true in general tha t D \ K-p is 
pseudoconvex, as simple examples show, and hence the extension of ( / ) to 
general n > 2 fails to be valid. Indeed Corollary 2 below specifies the necessary 
and sufficient conditions for D \ K-Q to be pseudoconvex when n > 3. Also 
the extension of ( / ) ' to general n > 2 does not hold, since for n > 3 O(D)-
convexity is no longer necessary for removability: for example every Stein 
compactum on bD is removable for n > 3 (see [11]). 

In fact, when n > 3 no theorem of the kind of ( / ) , to the effect of describing 
the envelope of holomorphy of bD \ K for an arbitrary compact set K C bD, 
is known, and it is even unknown, as far as we can say, whether it is always 
t rue tha t bD \ K should have a single-sheeted envelope of holomorphy.1 

As regards ( / ) ' , on the contrary, an extension to n > 2 has been recently 
established (see [7]). It can be stated as follows: 

( iT) For n >2, in order that K be removable it is necessary and sufficient 
that Hn~l(K]0) = 0 and the restriction map Hn-2{D]0) -> Hn~2(K', O) 
have dense image. 

Since for n — 2 the vanishing of Hl(K\ O) is equivalent to the condition 
tha t K be holomorphically convex (see [5]), it follows that ( iT) is indeed an 
extension of (I)' to general n > 2. Note that , since D is a Stein compactum, 
and hence Hq(D; O) = 0 for q > 1, when n > 3 the condition on the restriction 
map amounts to having °Hn~2(K\0) = 0 , where the suffix a means the 
associated separated space. 

1 Added July 19, 1993. Recently E.M. Chirka and E.L. Stout [Removable Singularities 
in the Boundary (to appear)] gave an example of a C°°-bounded strongly pseudoconvex 
domain D CC C2m, m > 2, and a compact set K C bD, with bD \ K being connected, 
such that the envelope of holomorphy of bD \ K is not single-sheeted. 
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(II) gives a first answer to the question of finding, for general n > 2, the 
envelope of holomorphy of bD \K. In fact it states a necessary and sufficient 
condition on K in order tha t the envelope may be the whole D\K. Here we 
shall establish a sharper result of this kind, which includes both ( / ) and (II) 
as particular cases, namely we shall prove the following theorem. 

T h e o r e m . Let n > 2 and let E be a compact set such that K C E C K^. 
Then, in order that D\E may be the envelope of holomorphy of bD \ K, it is 
necessary and sufficient that the following conditions should be satisfied: 

(1) The restriction map Hq(E\ O) -> Hq(K\ O) is bijective for q < n - 3 
and is infective with closed image for q = n — 2. 

(2) H^iE-.O) = 0 and the restriction map Hn'2(B]0) -+ Hn~2(E',0) 
has dense image. 

It is plain that this theorem implies ( / / ) : just take in it E = K. On the 
other hand, for n = 2 Condition (2) means that E — K-p, and then Condition 
(1) amounts to saying that the restriction map O(K^) —> O(K) should be 
injective with closed image, which indeed can be shown to be automatically 
true (see [8]); therefore for n — 2 the theorem does reduce to ( / ) . 

We wish to mention a couple of straightforward further consequences of 
the theorem. If we apply it to the case that n > 3 and E is holomorphically 
convex (e.g. a Stein compactum), on account of the vanishing of Hq(E] O) 
for q > 1, we get at once: 

Corol lary 1. Let n > 3 and let E be a holomorphically convex compact set 
such that K C E C K^. Then, in order that D \ E be the envelope of 
holomorphy of bD \ K} it is necessary and sufficient that Hq(K\ O) = 0 for 
1 < q < n — 3, that Hn~2(K, O) be separated and that E be the envelope of 
holomorphy of K. 

In particular we can state: 

Corol lary 2. For n >3, in order that D\K-Q be the envelope of holomorphy 
of bD \ K, it is necessary and sufficient that Hq(K\ O) — 0 for 1 < q < n — 3, 
that Hn~2(K] O) be separated and that Kjy be the envelope of holomorphy of 
K. 
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Remarks, (i) The cohomological conditions on K in the preceding corol
laries can be shown to be equivalent to the following: 

Hn~2(M \ K\ O) is separated, if n = 3; 

Hq(M \ K\ O) = 0 for 2 < q < n - 2, if n > 4. 

Moreover we recall tha t H2(M\K; O) is separated if and only if d£0,1(M\K) 
is a closed subspace of £° '2(M \ K). 

(ii) It is not possible to omit, in the preceding corollaries, the requirement 
tha t Hn~2(K\ O) should be separated. As a matter of fact, consider the open 
unit ball Bn of C \ n > 3, and the compact sets K = 6Bn fl {z G Cn : 
l m ( ^ _ ! ) = 0,zn = 0} , E = Bn fl {z e Cn : J m ( ^ n _ ! ) = 0, zn = 0}. It 
is readily seen that K is removable, and hence the envelope of holomorpy of 
bMn \ K is not Bn \ E, but the whole Bn \ K. On the other hand E is both 
the envelope of holomorphy and the polynomial hull of A", moreover one has 
№(K] O) = 0 for 1 < q < n - 3 and °Hn-2(K\ O) = 0. Indeed the point is 
tha t in this case Hn-2(K\ O) is not separated. 

1. P R E L I M I N A R I E S 

Before going into the proof of the theorem we need some preliminary results. 
We shall use the notation that , given a compact set E C M , or simply $ 
when no confusion can arise, denotes the paracompactifying family of supports 
in M \ E of all the relatively closed subsets of M \ E whose closure in M is 
compact, tha t is $ — c fl ( M \ E), where c denotes the family of compact 
subsets of M. 

L e m m a 1. Forn > 2, if M\E is connected, the following facts are equivalent: 
(a) Hn-\E] O) = 0 and the restriction map Hn~2(M] O) Hn~2(E] O) 

has dense image. 
(b) Hl(M\E-O) = 0. 

We have already established this result in [7], where it is needed for the 
proof of ( / / ) , so we refer to [7] for its proof. 

L e m m a 2. For n > 2, if D, E C M are a pseudoconvex domain and a 
compact set, respectively, the following facts are equivalent: 

(a) The restriction map Hq(D f]E]0) -> Hq(bD D £ ; O) is bijective for 
q < n — 3 and infective for q — n — 2, moreover the space H™~l(D D E\ O) is 
separated; 
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