Astérisque

GUIDO LUPACCIOLU

On the envelopes of holomorphy of strictly Leviconvex hypersurfaces

Astérisque, tome 217 (1993), p. 183-192

<http://www.numdam.org/item?id=AST_1993_217_183_0>

© Société mathématique de France, 1993, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ON THE ENVELOPES OF HOLOMORPHY OF STRICTLY LEVI-CONVEX HYPERSURFACES

Guido LUPACCIOLU

INTRODUCTION

We shall be concerned with the subject of holomorphic continuation of CR-functions from a relatively open part of the boundary of a strongly pseudoconvex domain.

Let M be a Stein manifold of dimension $n \ge 2$, $D \subset M$ a C^2 -bounded strongly pseudoconvex domain and K a proper closed subset of the boundary bD of D.

It is well-known that, due to the strict Levi-convexity of $bD \setminus K$, there exists an open set $U \subset D$, having $bD \setminus K$ as a part of its boundary, such that every continuous CR-function on $bD \setminus K$ has a unique continuous extension to $(bD \setminus K) \cup U$ which is holomorphic on U. The existence of U is referred to as the H. Lewy's extension phenomenon.

More recents results yield sharper information on U; in particular it has been shown that the open set $D \setminus \widehat{K}_{\overline{D}}$ ($\widehat{K}_{\overline{D}} = \mathcal{O}(\overline{D})$ -hull of K) is such a U with the mentioned features (see [11, 6] and the references therein).

For n = 2 it is also known that $D \setminus \widehat{K}_{\overline{D}}$ has another independent property: it is pseudoconvex (see [8, 9, 10]). This, combined with the above, implies at once the following noteworthy result:

(1) For n = 2 the envelope of holomorphy of $bD \setminus K$ is $\overline{D} \setminus \widehat{K}_{\overline{D}}$.

Remark. Here above and throughout the continuation we speak of envelopes of holomorphy of non-open subsets of M. We recall that in general the envelope of holomorphy E(S) of an arbitrary subset S of a Stein manifold can be given a precise definition as the union of the components of $\tilde{S} = spec(\mathcal{O}(S))$ which meet S (see [5]). However, in the case of our concern

where $S = bD \setminus K$, for the purposes of this paper the envelope of holomorphy may be simply understood as the disjoint union of $bD \setminus K$ and the envelope of holomorphy E(U) of an open set U as specified above, regarded as a holomorphic extension of U.

An immediate consequence of (I) is:

(I)' For n = 2, in order that K be removable, in the sense that each continuous CR-function f on $bD \setminus K$ may have a continuous extension $F \in \mathcal{C}^0(\overline{D} \setminus K) \cap \mathcal{O}(D)$, it is necessary and sufficient that $\widehat{K}_{\overline{D}} = K$, i.e. that K be $\mathcal{O}(\overline{D})$ -convex.

On the other hand, for $n \geq 3$ it is not true in general that $D \setminus \widehat{K}_{\overline{D}}$ is pseudoconvex, as simple examples show, and hence the extension of (I) to general $n \geq 2$ fails to be valid. Indeed Corollary 2 below specifies the necessary and sufficient conditions for $D \setminus \widehat{K}_{\overline{D}}$ to be pseudoconvex when $n \geq 3$. Also the extension of (I)' to general $n \geq 2$ does not hold, since for $n \geq 3$ $\mathcal{O}(\overline{D})$ convexity is no longer necessary for removability: for example every Stein compactum on bD is removable for $n \geq 3$ (see [11]).

In fact, when $n \geq 3$ no theorem of the kind of (I), to the effect of describing the envelope of holomorphy of $bD \setminus K$ for an arbitrary compact set $K \subset bD$, is known, and it is even unknown, as far as we can say, whether it is always true that $bD \setminus K$ should have a single-sheeted envelope of holomorphy.¹

As regards (I)', on the contrary, an extension to $n \ge 2$ has been recently established (see [7]). It can be stated as follows:

(II) For $n \geq 2$, in order that K be removable it is necessary and sufficient that $H^{n-1}(K; \mathcal{O}) = 0$ and the restriction map $H^{n-2}(\overline{D}; \mathcal{O}) \to H^{n-2}(K; \mathcal{O})$ have dense image.

Since for n = 2 the vanishing of $H^1(K; \mathcal{O})$ is equivalent to the condition that K be holomorphically convex (see [5]), it follows that (II) is indeed an extension of (I)' to general $n \geq 2$. Note that, since \overline{D} is a Stein compactum, and hence $H^q(\overline{D}; \mathcal{O}) = 0$ for $q \geq 1$, when $n \geq 3$ the condition on the restriction map amounts to having ${}^{\sigma}H^{n-2}(K; \mathcal{O}) = 0$, where the suffix σ means the associated separated space.

¹Added July 19, 1993. Recently E.M. Chirka and E.L. Stout [Removable Singularities in the Boundary (to appear)] gave an example of a \mathcal{C}^{∞} -bounded strongly pseudoconvex domain $D \subset \mathbb{C}^{2m}$, $m \geq 2$, and a compact set $K \subset bD$, with $bD \setminus K$ being connected, such that the envelope of holomorphy of $bD \setminus K$ is not single-sheeted.

(II) gives a first answer to the question of finding, for general $n \ge 2$, the envelope of holomorphy of $bD \setminus K$. In fact it states a necessary and sufficient condition on K in order that the envelope may be the whole $\overline{D} \setminus K$. Here we shall establish a sharper result of this kind, which includes both (I) and (II) as particular cases, namely we shall prove the following theorem.

Theorem. Let $n \ge 2$ and let E be a compact set such that $K \subset E \subset \widehat{K}_{\overline{D}}$. Then, in order that $\overline{D} \setminus E$ may be the envelope of holomorphy of $bD \setminus K$, it is necessary and sufficient that the following conditions should be satisfied:

(1) The restriction map $H^q(E; \mathcal{O}) \to H^q(K; \mathcal{O})$ is bijective for $q \leq n-3$ and is injective with closed image for q = n-2.

(2) $H^{n-1}(E; \mathcal{O}) = 0$ and the restriction map $H^{n-2}(\overline{D}; \mathcal{O}) \to H^{n-2}(E; \mathcal{O})$ has dense image.

It is plain that this theorem implies (II): just take in it E = K. On the other hand, for n = 2 Condition (2) means that $E = \hat{K}_{\overline{D}}$, and then Condition (1) amounts to saying that the restriction map $\mathcal{O}(\hat{K}_{\overline{D}}) \to \mathcal{O}(K)$ should be injective with closed image, which indeed can be shown to be automatically true (see [8]); therefore for n = 2 the theorem does reduce to (I).

We wish to mention a couple of straightforward further consequences of the theorem. If we apply it to the case that $n \geq 3$ and E is holomorphically convex (e.g. a Stein compactum), on account of the vanishing of $H^q(E; \mathcal{O})$ for $q \geq 1$, we get at once:

Corollary 1. Let $n \geq 3$ and let E be a holomorphically convex compact set such that $K \subset E \subset \widehat{K}_{\overline{D}}$. Then, in order that $\overline{D} \setminus E$ be the envelope of holomorphy of $bD \setminus K$, it is necessary and sufficient that $H^q(K; \mathcal{O}) = 0$ for $1 \leq q \leq n-3$, that $H^{n-2}(K; \mathcal{O})$ be separated and that E be the envelope of holomorphy of K.

In particular we can state:

Corollary 2. For $n \geq 3$, in order that $\overline{D} \setminus \widehat{K}_{\overline{D}}$ be the envelope of holomorphy of $bD \setminus K$, it is necessary and sufficient that $H^q(K; \mathcal{O}) = 0$ for $1 \leq q \leq n-3$, that $H^{n-2}(K; \mathcal{O})$ be separated and that $\widehat{K}_{\overline{D}}$ be the envelope of holomorphy of K.

G. LUPACCIOLU

Remarks. (i) The cohomological conditions on K in the preceding corollaries can be shown to be equivalent to the following:

$$H^{n-2}(M \setminus K; \mathcal{O})$$
 is separated, if $n = 3$;
 $H^q(M \setminus K; \mathcal{O}) = 0$ for $2 \le q \le n-2$, if $n \ge 4$.

Moreover we recall that $H^2(M \setminus K; \mathcal{O})$ is separated if and only if $\bar{\partial} \mathcal{E}^{0,1}(M \setminus K)$ is a closed subspace of $\mathcal{E}^{0,2}(M \setminus K)$.

(ii) It is not possible to omit, in the preceding corollaries, the requirement that $H^{n-2}(K; \mathcal{O})$ should be separated. As a matter of fact, consider the open unit ball \mathbb{B}_n of \mathbb{C}^n , $n \geq 3$, and the compact sets $K = b\mathbb{B}_n \cap \{z \in \mathbb{C}^n : \mathcal{I}m(z_{n-1}) = 0, z_n = 0\}, E = \overline{\mathbb{B}}_n \cap \{z \in \mathbb{C}^n : \mathcal{I}m(z_{n-1}) = 0, z_n = 0\}$. It is readily seen that K is removable, and hence the envelope of holomorpy of $b\mathbb{B}_n \setminus K$ is not $\overline{\mathbb{B}}_n \setminus E$, but the whole $\overline{\mathbb{B}}_n \setminus K$. On the other hand E is both the envelope of holomorphy and the polynomial hull of K, moreover one has $H^q(K; \mathcal{O}) = 0$ for $1 \leq q \leq n-3$ and ${}^{\sigma}H^{n-2}(K; \mathcal{O}) = 0$. Indeed the point is that in this case $H^{n-2}(K; \mathcal{O})$ is not separated.

1. PRELIMINARIES

Before going into the proof of the theorem we need some preliminary results. We shall use the notation that, given a compact set $E \subset M$, $\Phi(E)$, or simply Φ when no confusion can arise, denotes the paracompactifying family of supports in $M \setminus E$ of all the relatively closed subsets of $M \setminus E$ whose closure in M is compact, that is $\Phi = c \cap (M \setminus E)$, where c denotes the family of compact subsets of M.

Lemma 1. For $n \ge 2$, if $M \setminus E$ is connected, the following facts are equivalent: (a) $H^{n-1}(E; \mathcal{O}) = 0$ and the restriction map $H^{n-2}(M; \mathcal{O}) \to H^{n-2}(E; \mathcal{O})$ has dense image.

(b) $H^1_{\Phi}(M \setminus E; \mathcal{O}) = 0.$

We have already established this result in [7], where it is needed for the proof of (II), so we refer to [7] for its proof.

Lemma 2. For $n \ge 2$, if D, $E \subset M$ are a pseudoconvex domain and a compact set, respectively, the following facts are equivalent:

(a) The restriction map $H^q(\overline{D} \cap E; \mathcal{O}) \to H^q(bD \cap E; \mathcal{O})$ is bijective for $q \leq n-3$ and injective for q = n-2, moreover the space $H^{n-1}_c(D \cap E; \mathcal{O})$ is separated;