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Straightening of Arcs 
by Jean Pierre Rosay* 

dédié à Horace Bénédict de Saussure 

pour son oeuvre sur V hibernation des marmottes. 

Introduction. 

Any smooth arc 7 in Cn is polynomially convex ([4], or [5]). And one can 

approximate any continuous fonction on 7 by polynomials. Our goal is to show 

that if n > 2, under a global biholomorphic change of variables, an arc can 

always be "straightened" (approximately mapped to a line segment). This makes 

polynomial convexity and polynomial approximation trivial, unfortunately we 

need to use polynomial convexity in our proof. Here is a précise statement. 

Proposition Let T be a smooth (C°°) arc in Cn(n > 2), parametrized by 7 : 

[0,1] —» Cn. There exists (Tj) a séquence of automorphisms of Cn so that: Tj 07 

converges, in C°° topology, to the map t \—> (t, 0, . . . , 0); and the restriction of T j 

to [0,1] x {0,... ,0}) (identified with [0,1]^ converges to 7 in C°° topology. 

* Partly supported by NSF grant 
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Remarks. 

1) The Proposition above can be generalized to smooth totally real disks (of real 

dimension k,k < n) which are polynomially convex. In [2], a joint work with 

F. Forstneric, the case of totally real manifolds is studied in much greater 

generality (in the real analytic setting). 

2) There is a reason why we want not only the convergence of Tj on T, but also 

the convergence of T j on [0,1] x {(0,..., 0)}. This is explained in IL 

I. Proof of the Proposition 

In 1.1 we consider the case of real analytic arcs. For real analytic arcs, the 

Proposition follows very easily frorn a récent theorem by Andersen and Lempert 

[1], (see also [2]). In 1.2 the case of smooth arcs is considered. 

The theorem by Andersen and Lempert is this foliowing: 

Theorem (Andersen - Lempert) Let T be a biholomorphic map from a star 

shaped domain Çl onto a Runge domain Qf (in Cn,n > 2). Then T can be 

uniformly approximated on compact sets in Q by (global) automorphisms of Cn. 

Ll The real analytic case 

We suppose that 7 is a real analytic map from [0,1} into Cn,7 ^ 0 and 7 is 

1 - 1 . Set J = [0,1] x {(0,... , 0)} C Cn. We identify [0,1] with J. Then we can 

extend 7 to a holomorphic map 7 definecl in some neighborhood U of J in Cn, 

and 1 — 1. For example, we can set 

y(zu...,zn) =-y(zl) + 
n 

3 = 2 
ZjaAzi). 
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STRAIGHTENING OF ARCS 

In this formula 7 dénotes the holomorphic extension of 7 to a neighborhood of 

[0,1] in C, and one lias to take the (Cn valued) maps aj holomorphic and so that 

for any t G [0,1] the vectors (î(t), 0̂ 2(̂ )5 • • • > an(0) are linearly independent. 

Let (p be a function defined on R, which is 0 in [0,1] and strictly positive and 

convex ofï [0,1]. Set p(zu. ..,zn) = <p(xi) + \yi\2 •+ 
n 

i=2 
\ZJ\2. For 6 > 0 let Ue = 

{z G Cn, p(z) < e}. This is a convex and strictly pseudoconvex neighborhood 

of J. For 6 smaller than some eo positive, Ue C U. We claim that for e small 

enough j(U€) is Runge. Indeed, since T is polynomially convex, F has a basis 

of Stein neighborhood which are Runge. Fix such a neighborhood V C j(U). 

Take e so small that j(U€) C V. Then j(Ue) is Runge in V since it is defined by 

the inequality p o j~[ < e and p o j~l is strictly plurisubharmonic ([3] Theorem 

4.3.2). 

Since V is Runge in Cn,7(î7e) is Runge in Cn, as desired. 

We can apply the Andersen Lempert theorem to approximate the restriction 

of 7 to C/€, uniformly on compact sets, by a séquence (Sj) of biholomorphisms 
-1 

of Cn. Finally, set Tj = S j- We hâve better than convergence in the C°° 

topology on F or J. We have uniform convergence on neighborhoods of J and 
-1 

T, T j converges to 7 on Ue and (by the implicit function theorem) Tj converges, 

uniformly on compact sets to 7 on j(Ue). Hence Tj o 7 converges to the map 

t »-> (<,0,...,0). 

II.2 The smooth case 

A very natural idea is to approximate smooth arcs by real analytic arcs, 

and then to straighten the real analytic arcs foliowing 1.1. This is what we are 
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going to do, but it needs to be done with care (I did not find a trivial trick). In 

particular, one cannot expect uniform convergence on neighborhoods of T and 

[0,1] as in the real analytic case. We first prove a Lemma to handle this question 

of convergence of maps defined on shrinking neighborhoods. 

II.2.1 Lemma: Let K C C Rp K convex and compact, Q open. 

Set Qj = {z G fi, dist(z, if) < y}. Let x be a diffeomorphism from fi into Rp. 

Set K' = x(K)' Let \j be a séquence of smooth maps Xj • fij —* Rp so that 

\\Xj ~ xWcHtij) < jî- Then, for j large enough, K' C Xjfàj), and Xj is a 

diffeomorphism. And if \\XJ — x\\ck(çij) tends to 0 as j tends to oc, so does 

Xj ~ xWcHtij) < jî-

(By ||^||c*(a:,)5 we mean sup |Da$(a:)|, i.e. the Ck norm on jets which is 
|o|<fc 

stronger than the Ck norm of the restrictions) 

Proof: Shrinking fi if needed, we can assume that fi is convex and that there is 

a constant A > 0 so that for ail x and y C fi 

1 

A 
I* - y\ < 1x0*0 - x(y)\ <Mx~ v\ 

For j large enough (so that < JX) one gets 

1 

2A 
k - y\ < IXJ(s) - Xj(y)\ < \x - y\. 

Hence Xj is a diffeomorphism (whose Jacobian together with its inverse is bounded). 

Let a G K, Sj = {z G Cn \z - a\ = j } . The image of Sj under x is a topo-

logical sphère which "contains" the bail of radius centered at x(a)- F°r anv 

zeSj, \x(z)-xj(z)\<jj. 
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