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R E P R E S E N T A T I O N S OF N A S H F U N C T I O N S 

SLAWOMIR C Y N K 

Introduction. 
The aim of this paper is to characterize Nash functions of m complex 

variables in term of rational functions of m + 1 variables. 
Using the notation introduced in Chapter I of the paper our main result 

(Theorem III.2.1) may be formulated as follows: 

Let K be a compact, rationally convex subset of C m . A function 

f'-K C 

extends to a Nash function in a neighborhood of K if and only if there is a 
rational function R G C(z, w), holomorphic in neighborhood of K xT (where 
T denotes the unit circle in C), such that 

/(*) = X R(z, w)dw for z G K. 

The paper is organized as follows: 
Chapter I and II are of preparatory nature. In Chapter I we study the 

class of rationally convex compact sets. As this class is essential in our further 
considerations, we give detailed proves of all theorems that we shall use later. 

The aim of Chapter II is to characterize Nash functions in terms of a special 
class of Nash functions - called simple Nash functions (Lemma II.3.2). This 
Lemma (in the case of m = l ) was earlier obtained in [C-T] . In [D-L] similar 
result ("in local situation") was proved. 

Chapter III contains main results of our paper. 
Our result were inspired by [C-T] and [D-L]. We apply some methods used 

in these papers. 
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C H A P T E R I 
Rationally Convex Compact Sets 

1. Rational Functions . In this section we present some basic properties 
of rational functions We shall need them in further sections of this paper. 

Let us start with the definition of rational function on an algebraic subset 
V of C m . 

DEFINITION 1. The ring of rational functions of the set V, denoted by C(V), 
is the full ring of fraction of the coordinate ring Ry of the set V. An element 
of the ring C ( V ) , is called a rational function on V. 

Let / be an arbitrary rational function on V. According to the definition 
there exist two regular functions P, Q on V such that: 

1. Q is not a zero-divisor in the ring Ry (in other words Q is not identically 
equal 0 on any irreducible component of the algebraic set V ) , 

2. / = 
P 

Q' 

DEFINITION 2. A rational function f = 
P 

Q 
is said to be holomorphic at point 

a £V iff there exists a germ g £ Oa(V) of holomorphic function at the point 
a such that g • Q = P. 

Let us notice that the germ g is uniquely determined ( does not depend on 
the choice of regular functions P i Q). The set of point at which a rational 
function is holomorphic is an open and dense (in euclidean topology) subset 
of the set V. 

The following theorem yields more precise characterization that set. 

T H E O R E M 1. Let f be a rational function ofV. The set of all points at which 
the function f is not holomorphic, is a nowhere-dense algebraic subset ofV. 

Proof. There exist regular functions P, Q £ Ry such that / = 
P 

Q 
and the func

tion Q does not vanish at any irreducible component of the set V. 
The set 

X0 := {(x,w) € V x P1) (C):Q(x) ^ 0 and wQ(x) = P(x)} 

is a constructible subset and the set X := Xo is an algebraic subset of V x 
P^C). Moreover I j : = l n (C m x C) is an algebraic subset of C m x C. 
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Let us assume that the function / is holomorphic at a point a G V. There 
exists a germ g G Oa(V) of holomorphic function such that gQ = P . In this 
situation 

I n ( { a } x P 1 ) = { ( « , s W ) } . 

Choose an arbitrary holomorphic germ g\ G ( 9 a ( C m ) such that g\\y = g. 

The holomorphic germ h G C ? ( a , / ( a ) ) ( C m x C) defined by the formula 

h(zi, . . . , 2 m , 2 m + l ) : = 2 m + l - ^1(^1? • - • ? ^m)j 

is an element of the ideal of the germ of the analytic set X\ at the point 

(a, 5(a)). 
Using the Serre Lemma (on polynomial generators) ([L], VII.15.3., p.337) 

we conclude that there exist polynomials P i , . . . , Pk G I{X\) (I(X\) de

notes the ideal of the algebraic set X\) and germs of holomorphic functions 

9u • • • > 9k e 0 ( a , / ( a ) ) ( C m x C) such that 5 = 31 Pi + . . . , gkPk. Differentiating 

the above equality we observe that for at least one index i = 1 , . . . , k we have 
dPi 

Qz m+1 
( a , / ( a ) ) ^ 0 . 

Denoting by W the set 01 all points at which the function / is not holo

morphic we state that 

W1 : = { 1 G V: 3 a m + i G C: ( a , a m + i ) e X 

and V P G / ( X i ) 
qf 

dzm+i 
( a , a m + i ) = 0 

= 
= 

U ' 
' 

a € V : (a, 00) G A 
= 
= 

U ( 
( o e y ^ ^ n ^ o j x P 1 ) ) > 2 } c w. 

We shall prove that 

Wi =W. 

Suppose, on the contrary, that a G W \ W\. 

From the definition of W\ we have 

X n ( { a } ) x P 1 = { ( a , a m + 1 ) } , ûrn+l € (L. 

Moreover there is a polynomial F G I(Xi) such that 
dF 

dzm+i 
• ( a , a m + i ) ^ 0. 

By the implicit function theorem there exist an open neighborhood U of 

a G C m , a real number r > 0 and a holomorphic function 

(f>:U — • a m + i + A ( r ) _ (where A ( r ) := {z G C : | z | < r}) such that 
P " 1 ( 0 ) n ( ? 7 x ( a m + 1 + A(r))) = 0 . 
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As the natural projection 

7r:X 9 (a?i,.. • , # m , # m + i ) (^1, • • • iXrn) G V 

is a proper mapping we may assume (if necessary - after suitable decreasing 
of U and r) that 

Xn(UxC)C<f>\ ( V xu) . 

From the latest equality we can deduce that for any point z G V x U such 

that Q(z) ^ 0 we have P (z) 
Q(z) 

= Q (z) 

Since the set {z £V x U: Q(z) ^ 0} is dense in V x U we have 

P(z) = Q(z)-<f>(z) for any z e v x u, 

and tins means that tne rational mnction / is holomorphic at the point a. 
We obtain a contradiction which proves that W = W\. 

Let us notice that W = W\ is an algebraically constructible set 
([K] Th.III.11.1.; [L], VII.8.3 — the Chevalley Theorem), and hence — since 
it is closed — an algebraic set (cf. [L], VII.8.3.,.p. 291—295). The proof is 
completed • 

Let Vt be an open subset of C m . We shall denote by 7£(fi) the space of 
all holomorphic functions on Q which are restrictions to the set Q of rational 
functions. Let us notice that a function / : —• C belongs to 1Z(tl) if and 
only if there exist polynomials P, Q: C m —» C such that Q"~ 1(0) n Q = 0 and 

/(*) = 
P(z) 

3 0 0 

for ^ G fi. If the polynomials P, Q are relatively prime then 

their are uniquely determined (up to a constant factor). 
Let K be a fixed compact subset of C m . Denote 

O(K) ; = {f:K C : there exist an open neighborhood V of K 

and a function / G 0(V) such that f = f\K}. 

An extension of a function from the class 0(K) to an open neighborhood 
of K is not uniquely determined. 

In the same way as 0(K) we define the class TZ(K). 
Let us observe that a function / : K —• C belongs to the class TZ(K) if and 

only if there exist polynomials P, Q: C m -+ C such that Q _ 1 ( ° ) fl IT = 0 and 

f (z) = 
P(£) 

QU 
for z G /T. Polynomials P and Q are not (in general) uniquely 

determined (even up to a constant factor). 
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