Astérisque

ERIC AMAR A problem of ideals

Astérisque, tome 217 (1993), p. 9-12 http://www.numdam.org/item?id=AST 1993 217 9 0>

© Société mathématique de France, 1993, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A PROBLEM OF IDEALS

Eric Amar

Recently U. Cegrell [2] proved the following result:

Theorem. Let \mathbb{B} be the unit ball of \mathbb{C}^n and $f_1 \in A(\mathbb{B})$, $f_2 \in H^{\infty}(\mathbb{B})$ such that $\forall z \in \mathbb{B}, |f_1(z)| + |f_2(z)| \ge \delta$ then there are two functions g_1, g_2 in $H^{\infty}(\mathbb{B})$ such that: $f_1g_1 + f_2g_2 = 1$ in \mathbb{B} .

where, as usual, if Ω is a domain in \mathbb{C}^n , $A(\Omega)$ is the algebra of all holomorphic functions in Ω continuous up to the boundary, $A^k(\Omega)$ is the algebra of all holomorphic functions in Ω , \mathcal{C}^k up to $\partial\Omega$ and $H^{\infty}(\Omega)$ is the algebra of all holomorphic and bounded functions in Ω .

This means, in this special case, that the Corona is true. He uses a nice analysis of pic functions and representing measures in the ball, of independent interest.

The aim of this note is to give a very simple proof of this theorem which is also more general.

In order to state the result, let me give the following definition:

Definition. We say that the bounded pseudo-convex domain in \mathbb{C}^n has the L_q^{∞} property if: for any (0,q) form ω in $\mathcal{C}^{\infty}(\Omega) \cap L^{\infty}(\Omega)$, there is a (0,q-1) form u in $\mathcal{C}^{\infty}(\Omega) \cap L^{\infty}(\Omega)$ such that: $\overline{\partial} u = \omega$.

As usual, a (0,0) form is just a function.

There are many examples of such domains: the strictly pseudo-convex ones [6], the polydiscs [8], the ellipsoïds [4], [11], the domains of finite type in \mathbb{C}^2 [3], [5].

We shall prove the following:

Theorem 1. Let Ω be a pseudo-convex bounded domain in \mathbb{C}^n verifying the L_1^{∞} condition and let $f_1 \in A(\Omega)$, $f_2 \in H^{\infty}(\Omega)$ such that $\forall z \in \Omega$, $|f_1(z)| + |f_2(z)| \ge \delta$ then there are two functions g_1 , g_2 in $H^{\infty}(\Omega)$ such that: $f_1g_1 + f_2g_2 = 1$ in Ω .

Proof:

because f_1 is continuous up to $\partial\Omega$, it is easy to make a function $\chi \in \mathcal{C}^{\infty}(\overline{\Omega})$ such that:

$$\chi = egin{cases} 1 & in \ \{|f_1| > \delta/2\} \ 0 & in \ \{|f_1| < \delta/4\} \end{cases}$$

Now let $\omega := \frac{\overline{\partial}\chi}{f_1 f_2}$, then $\omega \in \mathcal{C}^{\infty}(\Omega) \cap L^{\infty}(\Omega)$ because on the set where $\overline{\partial}\chi \neq 0$, $|f_1 f_2| > \delta^2/16$. Moreover, $\overline{\partial}\omega = 0$ in Ω , hence, by the L_1^{∞} condition, there is a $u \in L^{\infty}(\Omega)$ such that: $\overline{\partial}u = \omega$.

Let us define

$$g_1 := \frac{\chi}{f_1} - uf_2 \text{ and } g_2 := \frac{1-\chi}{f_2} + uf_1;$$

then we get:

$$\overline{\partial}g_1 = 0, \ \overline{\partial}g_2 = 0$$

hence these functions are holomorphic in Ω and:

 $f_1g_1 + f_2g_2 = 1.$

Moreover the g_i 's are easily seen to be bounded in Ω , hence the theorem.

Now using the Koszul's Complex method as in [9], it is easy to prove, usingexactly the same lines the:

Theorem 2. Let Ω be a pseudo-convex bounded domain in \mathbb{C}^n verifying the L_q^{∞} condition for $q \leq p-1$ and let $f_1, ..., f_{p-1} \in A(\Omega)$, $f_p \in H^{\infty}(\Omega)$ such that $\forall z \in \mathbb{B} \sum_{i=1}^p |f_i(z)| \geq \delta$; then there are p functions $g_1, ..., g_p$ in $H^{\infty}(\Omega)$ such that: $\sum_i f_i g_i = 1$ in Ω .

Now let us define the \mathcal{C}_p^k property for a pseudo-convex bounded domain in an analogous way:

Definition. We say that the bounded pseudo-convex domain in \mathbb{C}^n has the \mathcal{C}_q^k property if: for any (0,q) form ω in $\mathcal{C}^k(\overline{\Omega})$, there is a (0,q-1) form u in $\mathcal{C}^k(\overline{\Omega})$ such that: $\overline{\partial} u = \omega$.

For k finite, the domains listed above with the L_q^{∞} property have the C_q^k property too. For $k = \infty$ a very famous theorem by J.J. Kohn [10] says that all pseudo-convex bounded domains with smooth boundary has the C_q^{∞} property.

The same way has above, we can show:

Theorem 3. Let Ω be a pseudo-convex bounded domain in \mathbb{C}^n verifying the \mathcal{C}_q^k condition for $q \leq p-1$ and let $f_1, ..., f_p \in A^k(\Omega)$, such that $\forall z \in \Omega \sum_{i=1}^p |f_i(z)| \geq \delta$; then there are p functions $g_1, ..., g_p$ in $A^k(\Omega)$ such that: $\sum_i f_i g_i = 1$ in Ω .

As a classical corollary we get:

Corollary. Let Ω be a pseudo-convex bounded domain in \mathbb{C}^n verifying the \mathcal{C}_q^k condition for $q \leq n$, then the spectrum of the algebra $A^k(\Omega)$ is $\overline{\Omega}$.

In the case $k = \infty$, M. Catlin [1] and M. Hakim and N. Sibony [7] already proved this result, the method they used is also a division method but slightly different and their method cannot give theorem 1 and 2 here.

References

 M. Catlin: Boundary behavior of holomorphic functions on weakly pseudoconvex domains. Thesis, Princeton University

[2] U. Cegrell: Representing measures in the Spectrum of $H^{\infty}(\Omega)$ Proceedings of the International Workshop, Wuppertal 1990 Aspects of Mathematics

[3] M. Christ: Regularity properties of the $\overline{\partial}_b$ -equation on weakly pseudoconvex CR manifolds of dimension three.

J. Am. Math. Soc. 1, 587-646 (1988)

[4] K. Diederich, J.E. Fornaess, M. Wiegerinck: Sharp Hölder estimates for $\overline{\partial}$ on ellipsoids.

Manuscr. Math. 56, 399-413 (1986)

 [5] C. Fefferman, J.J. Kohn: Hölder estimates on domains in two complex dimensions and on three dimensional CR manifolds. Adv. Math. 69, 233-303 (1988)

[6] H. Grauert, I. Lieb: Das Ramirezsche Integral und die Lösung der Gleichung $\overline{\partial}f = \alpha$ im Bereich der beschränkten Formen. Rice Univ. Studies 56, 26-50 (1970)

[7] M. Hakim, N. Sibony: Spectre de $A(\overline{\Omega})$ pour des domaines bornés faiblement pseudoconvexes régulier.

J. Functional Analysis 37, 127-135 (1980)

- [8] G. Henkin: Boundary properties of holomorphic functions of several variables.
 J. Soviet Math. 5, 612-687 (1976)
- [9] L. Hörmander: Generators for some rings of analytic functions. Bull. Amer. Math. Soc. 73, 943-949 (1967)
- [10] J.J. Kohn: Global regularity for $\overline{\partial}$ on weakly pseudoconvex manifolds. Trans. Amer. Math. Soc. 181, 273-292 (1973)

[11] M. Range: Integral kernels and Hölder estimates for ∂ on pseudoconvex domains of finite type in C²
 Math. Ann. 288, 63-74 (1990)

Amar Eric Université Bordeaux I 351 Cours de la Libération 33405 Talence, France