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S E S H A D R I C O N S T A N T S O N S M O O T H S U R F A C E S 

Lawrence EIN* 
Robert LAZARSFELD** 

Introduct ion 

Let X be a smooth complex projective variety of dimension n, and let L be 
a numerically effective line bundle on X. Following Demailly [De2], one defines 
the Seshadri constant of L at a point x £ X to be the real number 

e(L, x) = inf 
v } C3x 

L-C 

mx(C) 1g 

where the infimum is taken over all irreducible curves C passing through x, 
and mx(C) is the multiplicity of C at x. It is profitable to view e(L,x) as a 
local measure of how positive L is at x. For example if L is very ample, then 
e ( i , x) > 1; on a surface X the same is true more generally if L = Ox(D) 
for an ample effective divisor D 3 x which is smooth at x. In general, if 
/ : Blx(X) —• X denotes the blowing up of X at x and E = is the 
exceptional divisor, then for e > 0 the R-divisor f*L — e-E is nef if and only if 
e < e(L, x). (Consult [De2, §6] for other interpretations.) Similarly, one defines 
the global Seshadri constant 

e(L) = inf 
dgg 

e(L,x). 

Thus Seshadri's criterion for ampleness states that e(L) > 0 if and only if L is 
ample. 

Recent interest in Seshadri constants stems from the fact that they govern 
a simple method for producing sections of adjoint bundles Kx + kL (c.f. [De2, 
(6.8)]). In brief, by means of vanishing theorems on the blow-up Blx(X), a 
lower bound on e(L, x) yields an explicit value of k such that Kx + kL has a 
section which is non-zero at x (see (3.4) below). We shall see in §3 that Seshadri 
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constants alone cannot account for the known results on global generation and 
very ampleness of adjoint bundles ([Rdr], [Del ] , [EL]). However they remain 
very interesting in their own right as measures of local positivity. The subtlety 
of these invariants is reflected in the fact, pointed out by Demailly, that they 
are already rather difficult to compute on surfaces. 

The purpose of this note is to study Seshadri constants in this first non-
trivial case, when X is a smooth projective surface. One might anticipate that 
in general e(L, x) could become small on fairly arbitrary algebraic subsets of X. 
Somewhat surprisingly, our main result shows that this is not the case: 

T H E O R E M . Let L be an ample line bundle on a smooth complex projective 
surface X. Then e(L, x) > 1 for all except perhaps countably many points 
x £ X, and moreover if C\{L)2 > 1, then the set of exceptional points is in fact 
finite. More generally, given an integer e > 1, suppose that 

ci(£)2 > 2e2 — 2e + 1 and c\ (L) • T > e for every irreducible curve F C X. 

Then e(L, x) > e for all but finitely many x G X. 

On the other hand, simple examples (constructed by Miranda) show that e(L, x) 
can take on arbitrarily small values at isolated points. We hope that this gives 
some sense of the kind of picture one might hope for in higher dimensions. 

The proof of the theorem is completely elementary, the essential point 
being simply to view the question variationally. Specifically, suppose that L is 
an ample line bundle, and C = Co C X is a curve with m = mx(C) > C L for 
some point x = x0 £ C. By combining a simple computation in deformation 
theory (§1) with the Hodge index theorem, we show that (C, x) cannot move 
in a non-trivial one-parameter family (Ct,xt) with mXt(Ct) > rn for all t. In 
other words, pairs (C, x) forcing e(L, x) < 1 are rigid, and the first statement 
of the Theorem follows at once. We were inspired in this argument by work of 
G. Xu [Xu], who uses related but much more elaborate calculations to study 
geometric genera of subvarieties of general hypersurfaces in projective space. 
We present some examples and open questions in §3. 

We have benefitted from discussions with J. Kollar, W. Lang, R. Miranda, 
Y.-T. Siu, H. Tsuji, E. Viehweg, G. Xiao, and G. Xu. 

§1 . D e f o r m a t i o n s of S ingu la r C u r v e s on a Surface 

This section is devoted to a proof, in the spirit of [Xu], of an elementary 
lemma concerning the deformation theory of singular curves on a surface. While 
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the result in question is certainly well known in the folklore, we include an 
argument here for lack of a suitable reference and for the convenience of the 
reader. 

We consider the following situation. X is a smooth complex projective 
surface, and we suppose given a one-parameter family 

{ Ct 3 xt mfsm}teA 

consisting of curves Ct C X plus a point xt G Ct, parametrized by a smooth 
curve or small disk A. Setting C = CQ and x = x0 for 0 G A, the deformation 
determines a Kodaira-Spencer map 

p:T0A—*Hgsddg°(C,fhN), 

where N = Oc{C) is the normal bundle to C in Xdddg. 

L E M M A 1.1. Assume that mXt(Ct) >sg m for all t G A. Then p(j-t) G 
H°(C, N) vanishes to order > (m — 1) at x. 

REMARK. We say that a section s G HU(C,N) vanishes to order > k at a 
(possibly singular) point y G C if s is actually a section of the subsheaf AT(g)m^ C 
TV, where is the maximal ideal sheaf of y. 

PROOF OF LEMMA 1.1: We simply make an explicit computation. Specifically, 
the assertion is local on C and A, so we can assume that A is a small disk with 
coordinate and that C lies in an open subset U of C2 with coordinates (z, w), 
and x = (0, 0). The total space C C U X A of the deformation is then defined 
by a power series F(z,w,t) = ft(z,w) where Ct = {ft = 0}. We may suppose 
that xt = H O ) f°r suitable power series a(£), b(t). Then the curve defined 
by 

<f>t(z, w) =ddef F(z +ss a(t), w + b(t),t) 

has multiplicity > m at (0,0) for all i 6 A. Expanding <j>dt(z,w) = ^ 4>i{z, w)t% 
as a power series in t, it follows that <j>i € (z, w)m for all i. On the other hand, 

<j)\{z,w) = dfo 
dz 

(z,w)-da'(Q) + dfo 
dw 

<f>t(dz, w) =de dF 
dt 

<f>t(z, w) = 

and since 
ssg 
dz [z,w) dfo 

dw <f>t(z, w) G {z,dw)m~l we find that 

OF 
dt 

[z,w,0) 6 {z,w) ni — 1 

But dF 
dt 

\C is the local expression for p\ d 
wc 

G H°(C, AT), and the lemma follows. | 
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C O R O L L A R Y 1.2. In the situation of the Lemma, assume in addition that 
C is reduced and irreducible, and that the Kodaira-Spencer deformation class 
P(ft) e H°(CiN) is non-zero. Then C • C > m(m - 1). 

PROOF: This follows from the Lemma plus the fact that c\ (N) represents C• C 
In more detail, let / : Y — • X be the blowing-up of X at x, with exceptional 
divisor E C Y. Then f*C — C + fcE, where C C Y is the proper transform 
of C, and k = mx{C) > m. Note that C' is the blowing-up of C at x. Put 
s = p(£t), so that 0 ^ s e H°(C, m^"1 ® Oc(C)). Then s induces a non-zero 
section 

J e H°(C, f*(Oc(C)) ® Oy( ( l - m)E)\c.). 

This implies that deg f*(Oc(C))\c > (m - 1)E • C = Jk(m - 1). It follows 
that 

C • C = deg O c ( C ) = deg f*(Oc(C))\c> > k(m - 1) > m(m - 1), 

as claimed. | 

§2. Proof of the T h e o r e m 

We now give the proof of the theorem stated in the Introduction. 

As in the statement, let L be an ample line bundle on the smooth surface 
X. Then there are only finitely many algebraic families of reduced irreducible 
(i.e. integral) curves on X of bounded degree with respect to L. Therefore for 
fixed d > 0 the set 

sd = (C,x) x G C C X an integral curve , mx(C) > C • L, C • L < d > 

is parametrized by a finite union of irreducible quasi-projective varieties. Con
sequently 

S = \(C.x) x G C C X a reduced irreducible curve , mx(C) > C • L 

consists of at most count ably many algebraic families. The first statement of 
the theorem will follow if we prove that each of these families is discrete. 

Suppose to the contrary that there exists a non-trivial continuous family 
{<f>t(z, w) =de }t£A of reduced irreducible curves Ct C X, plus points xt G Ct, with 

(*) ™>t —def rnultXt(C<f>t(z, w) =det) > jjjCf L for all t G A. 
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