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Compactifìcations of moduli spaces 
inspired by mirror symmetry 

David R. Morrison 

The study of moduli spaces by means of the period mapping has found its 
greatest success for moduli spaces of varieties with trivial canonical bundle, 
or more generally, varieties with Kodaira dimension zero. Now these moduli 
spaces play a pivotal role in the classification theory of algebraic varieties, 
since varieties with nonnegative Kodaira dimension which are not of general 
type admit birational fibrations by varieties of Kodaira dimension zero. Since 
such fibrations typically include singular fibers as well as smooth ones, it is 
important to understand how to compactify the corresponding moduli spaces 
(and if possible, to give geometric interpretations to the boundary of the 
compactification). Note that because of the possibility of blowing up along 
the boundary, abstract compactifications of moduli spaces are far from unique. 

The hope that the period mapping could be used to construct compacti­
fications of moduli spaces was given concrete expression in some conjectures 
of Griffiths [25, §9] and others in the late 1960's. In particular, Griffiths con­
jectured that there would be an analogue of the Satake-Baily-Borel compact­
ifications of arithmetic quotients of bounded symmetric domains, with some 
kind of "minimality" property among compactifications. Although there has 
been much progress since [25] in understanding the behavior of period map­
pings near the boundary of moduli, compactifications of this type have not 
been constructed, other than in special cases. 

In the case of algebraic K3 surfaces, the moduli spaces themselves are 
arithmetic quotients of bounded symmetric domains, so each has a minimal 
(Satake-Baily-Borel) compactification. In studying the moduli spaces for K3 
surfaces of low degree in the early 1980's, Looijenga [35] found that the Satake-
Baily-Borel compactification needed to be blown up slightly in order to give 
a good geometric interpretation to the boundary. He introduced a class of 
compactifications, the semi-toric compactifications, which includes the ones 
with a good geometric interpietation. 
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In higher dimension, the moduli spaces are not expected to be arithmetic 
quotients of symmetric domains, so different techniques are needed. The 
study of these moduli spaces has received renewed attention recently, due to 
the discovery by theoretical physicists of a phenomenon called "mirror sym­
metry" . One of the predictions of mirror symmetry is that the moduli space 
for a variety with trivial canonical bundle, which parameterizes the possi­
ble complex structures on the underlying differentiable manifold, should also 
serve as the parameter space for a very different kind of structure on a "mir­
ror partner"—another variety with trivial canonical bundle. This alternate 
description of the moduli space turns out to be well-adapted to analysis by 
Looijenga's techniques; we carry out that analysis here. 

In the physicists' formulation, one fixes a differentiable manifold X which 
admits complex structures with trivial canonical bundle (a "Calabi-Yau man­
ifold"), and studies something called nonlinear sigma-models on X. Such an 
object can be determined by specifying both a complex structure on X, and 
some "extra structure" (cf. [40]); the moduli space of interest to the physicists 
parameterizes the choice of both. The roles of the "complex structure" and 
"extra structure" subspaces of this parameter space are reversed when X is 
replaced by a mirror partner. 

Most aspects of mirror symmetry must be regarded as conjectural by math­
ematicians at the moment, and in this paper we conjecture much more than 
we prove. In a companion paper [41], we consider formally degenerating vari­
ations of Hodge structure near normal crossing boundary points of the mod­
uli space, and describe a conjectural link to the numbers of rational curves 
of various degrees on a mirror partner. In the present paper, we extend 
these considerations to boundary points which are not of normal crossing 
type, and formulate a mathematical mirror symmetry conjecture in greater 
generality. In addition, we find that when studied from the mirror perspec­
tive, a "minimal" partial compactification of the moduli space—analogous to 
the Satake-Baily-Borel compactification—appears very natural, provided that 
several conjectures about the mirror partner hold. 

One of our conjectures is a simple and compelling statement about the 
Kahler cone of Calabi-Yau varieties. If true, it clarifies the role of some of the 
"infinite discrete" structures on such a variety, which nevertheless seem to be 
finite modulo automorphisms. We have verified this conjecture in a nontrivial 
case in joint work with A. Grassi [21]. 

The plan of the paper is as follows. In the first several sections, we re­
view Looijenga's compactifications, describe a concrete example, and add a 
refinement to the theory in the form of a flat connection on the holomorphic 
cotangent bundle of the moduli space. We then turn to the description of the 
larger moduli spaces of interest to physicists, and analyze certain boundary 
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points of those spaces. Towards the end of the paper, we explore the math­
ematical implications of mirror symmetry in constructing compactifications 
of moduli spaces. We close by discussing some evidence for mirror symmetry 
which (in hindsight) was available in 1979. 

1 Semi-toric compactifications 

The first methods for compactifying arithmetic quotients of bounded sym­
metric domains were found by Satake [46] and Baily-Borel [5]. The com­
pactification produced by their methods, often called the Satake-Baily-Borel 
compactification, adds a "minimal" amount to the quotient space in complet­
ing it to a compact complex analytic space. This minimality can be made 
quite precise, thanks to the Borel extension theorem [10] which guarantees 
that for a given quotient of a bounded symmetric domain by an arithmetic 
group, any compactification whose boundary is a divisor with normal cross­
ings will map to the Satake-Baily-Borel compactification (provided that the 
arithmetic group is torsion-free). 

Satake-Baily-Borel compactifications have rather bad singularities on their 
boundaries, so they are difficult to study in detail. Explicit resolutions of sin­
gularities for these compactifications were constructed in special cases by Igusa 
[30], Hemperly [27], and Hirzebruch [28]; the general case was subsequently 
treated by Satake [47] and Ash et al. [1]. The methods of [1] produce what are 
usually called Mumford compactifications—these are smooth, and have a di­
visor with normal crossings on the boundary, but unfortunately many choices 
must be made in their construction. The Satake-Baily-Borel compactification, 
on the other hand, is canonical. 

Some years later, Looijenga [35] generalized both the Satake-Baily-Borel 
and the Mumford compactifications by means of a construction which can 
be applied widely, not just in the case of arithmetic quotients of bounded 
symmetric domains. Looijenga's construction gives partial compactifications 
of certain quotients of tube domains by discrete group actions. A tube do­
main is the set of points in a complex vector space whose imaginary parts 
are constrained to lie in a specified cone. Whereas Ash et al. [1] had only 
considered homogeneous self-adjoint cones, Looijenga showed that analogous 
constructions could be made in a more general context. 

The starting point is a free Z-module L of finite rank, and the real vector 
space LR ~ L ® R which it spans. A convex cone a in LR is strongly convex 
if a Pi (—a) C {0}. A convex cone is generated by the set S if every element 
in the cone can be written as a linear combination of the elements of S with 
nonnegative coefficients. And a convex cone is rational polyhedral if it is 
generated by a finite subset of the rational vector space L Q := L ® Q . 
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Let C C LR be an open strongly convex cone, and let T C Aff(L) be 
a group of affine-linear transformations of L which contains the translation 
subgroup L of Aff(L). If the linear part To := T/L C GL(L) of T preserves 
the cone C, then the group T acts on the tube domain V := LR+ i C. We wish 
to partially compactify the quotient space V/T, including limit points for all 
paths moving out towards infinity in the tube domain. 

Looijenga formulated a condition which guarantees the existence of partial 
compactifications of this kind. Let C+ be the convex hull ofCDLq. Following 
[35], we say that (LQ,C,TO) is admissible if there exists a rational polyhedral 
cone II C C+ such that To.II = C+. Given an admissible triple (LQ,C,TO) , 
the (somewhat cumbersome) data needed to specify one of Looijenga's partial 
compactifications is as follows.1 

DEFINITION 1 [35] A locally rational polyhedral decomposition of C+ is a 
collection V of strongly convex cones such that 

(i) C+ is the disjoint union of the cones belonging to V, 

(ii) for every a £ V, the №-span of a is defined over Q, 

(Hi) if a £ V9 if r is the relative interior of a nonempty face of the closure 
of a, and if T C C + , then r G V, and 

(iv) if U is a rational polyhedral cone in C+, then Ii meets only finitely many 
members ofV. 

(The decomposition V is called rational polyhedral if all the cones in V 
are relative interiors of rational polyhedral cones. This is the same notion 
which appears in toric geometry [19, 43] , except that the cones appearing in 
V as formulated here are the relative interiors of the cones appearing in that 
theory.) 

For each To-invariant locally rational polyhedral decomposition V of C+, 
there is a partial compactification oiV/T called the semi-toric (partial) com­
pactification associated to V. This partial compactification has the form 
V(V)/r, where V(V) is the disjoint union of certain strata V(a) associated 
to the cones a in the decomposition. The complex dimension of the stratum 
V(a) coincides with the real codimension of the cone a in LR; in particular, 
the open cones in V correspond to the O-dimensional strata in V{V). The del­
icate points in the construction are the specification of a topology on P('P), 

1 W e have modified Looijenga's definition slightly, so that the use of the term "face" is 
the standard one (cf. [45]): a subset T of a convex set S is a face of S if every closed line 
segment in S which has one of its relative interior points lying in T also has both endpoints 
lying in T. 
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