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A Finiteness Theorem for Isogeny Correspondences 

Alexandra Buium 

0. Introduction 

Let Ag,n be the moduli space of principally polarized abelian varieties 

over C of dimension g > 2 with level n structure, n > 3; we will view Ag,n as an 

algebraic variety over C. Moreover, let Y C Ag,n be a curve (by which we will 

understand an irreducible, closed, possibly singular subvariety of dimension 

1). By an isogeny correspondence on Y we will understand an (irreducible, 

closed, possibly singular) curve Z C Y x Y for which there exists a quasi-

finite map Z1 —• Z from an irreducible curve Z1 with the property that the 

two abelian schemes over Z' deduced bv base change via 

Z' Z CY xY ^->Y ¿ = 1,2 

Qp2- = i-th projection) are isogenous. Note that two abelian schemes over Z* 

are called isogenous if there exists a surjective homomorphism between them 

with kernel finite over Z'\ so we do not require our isogenics preserve, say, 

polarizations. 

The question which we address in this paper is: how many isogeny cor

respondences can exist on a "sufficiently general" curve Y C Ag,n! 

It is easy to see that there exist "lots" of curves Y C Ag^n carrying in

finitely many isogeny correspondences: more precisely, the union of all such 
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Y's in Ag,n(C) is dense in the complex topolog}' of Ag^n(C) (see the Propo

sition from Section 1). Nevertheless, our main result here will imply in par

ticular that "most" curves Y C Ag,n carry at most finitely many isogeny 

correspondences (see Theorem 1 below). 

Indeed, let C(Ag,n) be the set of all (irreducible, closed, possibly singular) 

curves in Ag^n; we will put a natural topology on C(Ag,n) which we call 

the Kolchin topolog}' such that C(Ag,n) becomes an irreducible Noetherian 

topological space and then we will prove in particular the following: 

Theorem 1. There exists a dense Kolchin open subset Co of C(Ag,n) such 

that any curve Y belonging to Co carries at most finitely many isogeny cor

respondences. 

Remark. If a curve Y C A<̂ n carries at most finitely many isogeny corre

spondences Z then any such Z must have only finite orbits. 

Let's define in what follows the Kolchin topology on C{Ag,n). More 

generally one can define the Kolchin topology on the set C(A) of all (irre

ducible, closed, possibly singular) curves embedded in a given (irreducible, 

possibly singular) algebraic variet}' A over C. Indeed, we consider first the 

"jet scheme" jet (A), cf. [Bi]; recall that this is by definition an A-scheme 

with a C-derivation 6 of its structure sheaf, characterized by the fact that 

for any pair (Z, d) consisting of an A-scheme Z and a C-derivation d on 0^ 

there is a unique horizontal morphism of A-schemes Z —> jet (A); "horizon

tal" here means "commuting with 6 and cT. For instance, if A = An = 

Spec C[yi,..., yn] then jet (A) = Spec C{yi,..., hn } where C{yi,..., yn } is 

the ring of ^-polynomials in j /x , . . . , yn with coefficients in C (which by defi

nition is the ring of polynomials with coefficients in C in the infinite family 
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of variables i > 0, 1 <j < n, with C-derivation 6 sending y^ into ŷ "1"1̂ ). 

Now for any Zariski closed subset H of jet (A) we denote by C#(A) the set 

of all curves Y G C(A) such that the image of the natural horizontal closed 

immersion jet (Y) —* jet (A) is contained in H. One easily checks that the 

sets CH(A) are the closed sets of a topology which we call the Kolchin topol

ogy (one has to use the non-obvious fact that jet (Y) is an irreducible scheme 

which follows from correctly interpreting a theorem of Kolchin, [K] p. 200). 

We will check in Section 2 below that C(A) with the Kolchin topology is an 

irreducible Noetherian topological space. 

Remark. Intuitively a subset of C(A) is Kolchin closed if it consists of all 

curves Y G C(A) which "satisfy a certain system of algebraic differential 

equations on A " . As the proof of Theorem 1 will show, the "system defining" 

C(AG,N) \ Co has "order 6" (i.e. "comes from jets of order 6") and is highly 

nonlinear. 

Actually we can do much better than in Theorem 1, namely we can 

"bound asymptotically" (for Y G Co) the number of isogen}' correspondences 

on Y "counted with certain natural multiplicities" (see Theorem V below). 

We need more notations. For any curve Y C AG^N we denote by p{Y) the genus 

of a smooth projective model of Y. Moreover, for any isogeny correspondence 

Z C Y x Y we let [Z : Y]?; denote the degree of the map Z C Y x Y Y, 

i = 1,2 and put i(Y) UZ : Yh = UZ : Y], G NU {oc}, where Z runs 

through the set of all isogeny correspondences on Y (we put i(Y) = 0 if this set 

is empty). This i(Y) is the "number of isogeny correspondences counted with 

multiplicities": for alternative descriptions of i(Y) we refer to Lemmas 1 and 

2 from Section 1. Finally, we shall lix a smooth projective compactification 
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Ag,n of Ag^n and a very ample line bundle 0(1) on Ag,n; then for any curve 

Y C Ag,n we shall denote by deg(Y) the degree of the Zariski closure of Y in 

Ag,n with respect to 0(1). 

We can state the following strengthening of Theorem 1: 

Theorem 1\ There exist a dense Kolchin open subset Co of C(Ag,n) and 

two positive integers mi? ra2 such that for all Y G Co we have 

i(Y) < m1 deg(y) + m2p(Y) 

Remark. A careful examination of the proof leads to an explicit value for 

m2. But determining such a value for mi seems much harder. 

We close this introduction by giving a consequence of Theorem 1'. To 

state it note that the set A^n(C) of C-points of A9,n has a natural equivalence 

relation on it given by isogeny: two points in A9,n(C) will be called isogenous 

if the corresponding abelian C-varieties are isogenous. Each isogeny class in 

Ap,n(C) is dense in the complex topology because it contains the image of 

a Sp(2#,Q)-orbit on the Siegel upper half space. For any y G A^n(C) we 

denote b}' Iy C A^n(C) the isogeny class of y. Then Theorem 1' will imply 

the following: 

Theorem 2 There exist a dense Kolchin open subset Co of C{AQ,n) and two 

positive integers mi, ra2 such that for all Y G Co and for any point y G Y(C) 

outside a certain countable subset of Y(C), the set Y(C) fi Iy is finite of 

cardinahty at most mi deg(Y) + m2p(Y). 

Remark. As the proof will show, the countable subset of Y(C) appearing in 

the above statement can be taken simply to be the set of all points in Y(C) 
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