Astérisque

ALEXANDRU BUIUM A finiteness theorem for isogeny correspondences

Astérisque, tome 218 (1993), p. 35-60

<http://www.numdam.org/item?id=AST_1993_218_35_0>

© Société mathématique de France, 1993, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A Finiteness Theorem for Isogeny Correspondences Alexandru Buium

0. Introduction

Let $A_{g,n}$ be the moduli space of principally polarized abelian varieties over \mathbb{C} of dimension $g \ge 2$ with level n structure, $n \ge 3$; we will view $A_{g,n}$ as an algebraic variety over \mathbb{C} . Moreover, let $Y \subset A_{g,n}$ be a curve (by which we will understand an irreducible, closed, possibly singular subvariety of dimension 1). By an isogeny correspondence on Y we will understand an (irreducible, closed, possibly singular) curve $Z \subset Y \times Y$ for which there exists a quasifinite map $Z' \to Z$ from an irreducible curve Z' with the property that the two abelian schemes over Z' deduced by base change via

$$Z' \to Z \subset Y \times Y \xrightarrow{p_i} Y \qquad i = 1, 2$$

 $(p_i = \text{i-th projection})$ are isogenous. Note that two abelian schemes over Z' are called isogenous if there exists a surjective homomorphism between them with kernel finite over Z'; so we do not require our isogenies preserve, say, polarizations.

The question which we address in this paper is: how many isogeny correspondences can exist on a "sufficiently general" curve $Y \subset A_{g,n}$?

It is easy to see that there exist "lots" of curves $Y \subset A_{g,n}$ carrying infinitely many isogeny correspondences: more precisely, the union of all such Y's in $A_{g,n}(\mathbb{C})$ is dense in the complex topology of $A_{g,n}(\mathbb{C})$ (see the Proposition from Section 1). Nevertheless, our main result here will imply in particular that "most" curves $Y \subset A_{g,n}$ carry at most finitely many isogeny correspondences (see Theorem 1 below).

Indeed, let $C(A_{g,n})$ be the set of all (irreducible, closed, possibly singular) curves in $A_{g,n}$; we will put a natural topology on $C(A_{g,n})$ which we call the Kolchin topology such that $C(A_{g,n})$ becomes an irreducible Noetherian topological space and then we will prove in particular the following:

Theorem 1. There exists a dense Kolchin open subset C_0 of $C(A_{g,n})$ such that any curve Y belonging to C_0 carries at most finitely many isogeny correspondences.

Remark. If a curve $Y \subset A_{g,n}$ carries at most finitely many isogeny correspondences Z then any such Z must have only finite orbits.

Let's define in what follows the Kolchin topology on $C(A_{g,n})$. More generally one can define the Kolchin topology on the set C(A) of all (irreducible, closed, possibly singular) curves embedded in a given (irreducible, possibly singular) algebraic variety A over \mathbb{C} . Indeed, we consider first the "jet scheme" jet (A), cf. [B₁]; recall that this is by definition an A-scheme with a \mathbb{C} -derivation δ of its structure sheaf, characterized by the fact that for any pair (Z, d) consisting of an A-scheme Z and a \mathbb{C} -derivation d on \mathcal{O}_Z there is a unique horizontal morphism of A-schemes $Z \to \text{jet}(A)$; "horizontal" here means "commuting with δ and d". For instance, if $A = \mathbb{A}^n =$ $\operatorname{Spec} \mathbb{C}[y_1, \ldots, y_n]$ then $\text{jet}(A) = \operatorname{Spec} \mathbb{C}\{y_1, \ldots, h_n\}$ where $\mathbb{C}\{y_1, \ldots, y_n\}$ is the ring of δ -polynomials in y_1, \ldots, y_n with coefficients in \mathbb{C} (which by definition is the ring of polynomials with coefficients in \mathbb{C} in the infinite family of variables $y_j^{(i)}$, $i \ge 0$, $1 \le j \le n$, with \mathbb{C} -derivation δ sending $y_j^{(i)}$ into $y_j^{(i+1)}$). Now for any Zariski closed subset H of jet (A) we denote by $C_H(A)$ the set of all curves $Y \in C(A)$ such that the image of the natural horizontal closed immersion jet $(Y) \to \text{jet}(A)$ is contained in H. One easily checks that the sets $C_H(A)$ are the closed sets of a topology which we call the Kolchin topology (one has to use the non-obvious fact that jet (Y) is an irreducible scheme which follows from correctly interpreting a theorem of Kolchin, [K] p. 200). We will check in Section 2 below that C(A) with the Kolchin topology is an irreducible Noetherian topological space.

Remark. Intuitively a subset of C(A) is Kolchin closed if it consists of all curves $Y \in C(A)$ which "satisfy a certain system of algebraic differential equations on A". As the proof of Theorem 1 will show, the "system defining" $C(A_{g,n}) \smallsetminus C_0$ has "order 6" (i.e. "comes from jets of order 6") and is highly nonlinear.

Actually we can do much better than in Theorem 1, namely we can "bound asymptotically" (for $Y \in C_0$) the number of isogeny correspondences on Y "counted with certain natural multiplicities" (see Theorem 1' below). We need more notations. For any curve $Y \subset A_{g,n}$ we denote by p(Y) the genus of a smooth projective model of Y. Moreover, for any isogeny correspondence $Z \subset Y \times Y$ we let $[Z : Y]_i$ denote the degree of the map $Z \subset Y \times Y \xrightarrow{p_i} Y$, i = 1, 2 and put $i(Y) = \sum [Z : Y]_1 = \sum [Z : Y]_2 \in \mathbb{N} \cup \{\infty\}$, where Z runs through the set of all isogeny correspondences on Y (we put i(Y) = 0 if this set is empty). This i(Y) is the "number of isogeny correspondences counted with multiplicities": for alternative descriptions of i(Y) we refer to Lemmas 1 and 2 from Section 1. Finally, we shall fix a smooth projective compactification $A_{g,n}$ of $A_{g,n}$ and a very ample line bundle $\mathcal{O}(1)$ on $A_{g,n}$; then for any curve $Y \subset A_{g,n}$ we shall denote by $\deg(Y)$ the degree of the Zariski closure of Y in $\overline{A}_{g,n}$ with respect to $\mathcal{O}(1)$.

We can state the following strengthening of Theorem 1:

Theorem 1'. There exist a dense Kolchin open subset C_0 of $C(A_{g,n})$ and two positive integers m_1 , m_2 such that for all $Y \in C_0$ we have

$$i(Y) \le m_1 \deg(Y) + m_2 p(Y)$$

Remark. A careful examination of the proof leads to an explicit value for m_2 . But determining such a value for m_1 seems much harder.

We close this introduction by giving a consequence of Theorem 1'. To state it note that the set $A_{g,n}(\mathbb{C})$ of \mathbb{C} -points of $A_{g,n}$ has a natural equivalence relation on it given by isogeny: two points in $A_{g,n}(\mathbb{C})$ will be called isogenous if the corresponding abelian \mathbb{C} -varieties are isogenous. Each isogeny class in $A_{g,n}(\mathbb{C})$ is dense in the complex topology because it contains the image of a Sp $(2g, \mathbb{Q})$ -orbit on the Siegel upper half space. For any $y \in A_{g,n}(\mathbb{C})$ we denote by $I_y \subset A_{g,n}(\mathbb{C})$ the isogeny class of y. Then Theorem 1' will imply the following:

Theorem 2 There exist a dense Kolchin open subset C_0 of $C(A_{g,n})$ and two positive integers m_1 , m_2 such that for all $Y \in C_0$ and for any point $y \in Y(\mathbb{C})$ outside a certain countable subset of $Y(\mathbb{C})$, the set $Y(\mathbb{C}) \cap I_y$ is finite of cardinality at most $m_1 \deg(Y) + m_2 p(Y)$.

Remark. As the proof will show, the countable subset of $Y(\mathbb{C})$ appearing in the above statement can be taken simply to be the set of all points in $Y(\mathbb{C})$