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Quantum Cohomology Rings of Toric Manifolds 

Victor V. Batyrev 

1 Introduction 

The notion of quantum cohomology ring of a Kahler manifold V naturally 
appears in theoretical physics in the consideration of the so called topological 
sigma model associated with V ([16], 3a-b). If the canonical line bundle Ky of 
V is negative, then one recovers the multiplicative structure of the quantum 
cohomology ring of V from the intersection theory on the moduli space T\ of 
holomorphic mappings / of the Riemann sphere / : S 2 = C P 1 —* V where A 
is the homology class in H2(V, Z) of / ( C P 1 ) . 

If the canonical bundle Ky is trivial, the quantum cohomology ring was 
considered by C. Vafa as an important tool for explaining the mirror symmetry 
for Calabi-Yau manifolds [15]. 

The quantum cohomology ring QH^V, C) of a Kahler manifold V, un
like the ordinary cohomology ring, have the multiplicative structure which 
depends on the class cp of the Kahler (1, l)-form corresponding to a Kahler 
metric g on V. When we rescale the metric g —• tg and put t —• oo, the 
quantum ring becomes the classical cohomology ring. For example, for the 
topological sigma model on the complex projective line C P 1 itself, the classi
cal cohomology ring is generated by the class x of a Kahler (1, l)-form, where 
x satisfies the quadratic equation 

x2 = 0, (1) 
while the quantum cohomology ring is also generated by a:, but the equation 
satisfied by x is different: 

x2 — exp(-
( 
( 

A 
cp), (2) 

S. M. F. 
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À is a non-zero effective 2-cycle. Similarly, the quantum cohomology ring of d-
dimensional complex projective space is generated by the element x satisfying 
the equation 

d+l 

x ^ — exp 
(- ( 

( 
A 

ip). (3) 

The main purpose of this paper is to construct and investigate the quantum 
cohomology ring QH*(P%, C) of an arbitrary smooth compact d-dimensional 
toric manifold PE where cp is an element of the ordinary second cohomology 
group iJ 2 (Ps, C) . Since all projective spaces are toric manifolds, we obtain a 
generalization of above examples of quantum cohomology rings. 

According to the physical interpretation, a quantum cohomology ring is a 
closed operator algebra acting on the fermionic Hilbert space. For example, 
the equation (3) one should better write as an equations for a linear operator 
X corresponding to the cohomology class x: 

Xd+l = exp(- ) 
) 

y 
(p)ld. (4) 

It is convenient to define quantum rings by polynomial equations among 
generators. 

Definition 1.1 Let 
h(t, x) — E Cn(t)x

n 

be a one-parameter family of polynomials in the polynomial ring C[x], where 
x = {x{}iei is a set of variables indexed by J, t is a positive real number, J\f 
is a fixed finite set of exponents. We say that the polynomial 

h°°(x) = T. n 

is the limit of the family h(t,x) as t —• oo, if the point {c£°} n €j\/- of the 
(| AT | — l)-dimensional complex projective space is the limit of the one-
parameter family of points with homogeneous coordinates {cn{t)}neM-

Definition 1.2 Let Rt be a one-parameter family of commutative algebras 
over C with a fixed set of generators { r , } , t 6 R>o- We denote by Jt the ideal 
in C[a:] consisting of all polynomial relations among { r , } , i.e., the kernel of 
the surjective homomorphism C[x] —* Rt. We say that the ideal J00 is the 
limit of Jt as t —• oo, if any one-parameter family of polynomials h(t, x) G Jt 
(as in 1.1) has a limit, and J°° is generated as C-vector space by all these 
limits. The C-algebra 

R°° = C[x]/J°° 

will be called the limit of Rt. 
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Remark 1.3 In general, it is not true that if J°° = limf_KX>Jf, and Jt is 
generated by a finite set of polynomials {hi(t, x)..., /&*(£, # ) } , then J°° is 
generated by the limits { h 1 8 ( x ) . . , h8f>(x)}. The limit ideal J°° is generated 
by the limits hf>{x) only if the set of polynomials {hi(t,x)} form a Grobner-
type basis for Jt. 

In this paper, we establish the following basic properties of quantum coho
mology rings of toric manifolds: 

I : If (p is an element in the interior of the Kahler cone K(P<z) C i? 2(Px;, C), 
then there exists a limit of QH^{PE C) as t —• oo, and this limit is isomorphic 
to the ordinary cohomology ring iJ*(Px;, C) (Corollary 5.5). 

II : Assume that two smooth projective toric manifolds P ^ and PE 2 are 
isomorphic in codimension 1, for instance, that Ps 1 is obtained from PE 2 

by a flop-type birational transformation. Then the natural isomorphism 
H2{P^C) = i J 2 (Ps 2 ,C) induces the isomorphism between the quantum 
cohomology rings 

QH;(PEI,C)^QH;(PE2,C) 

(Theorem 6.1). We notice that ordinary cohomology rings of Ps 1 and Ps 2 are 
not isomorphic in general. 

Il l : Assume that the first Chern class ci(Ps) of P^ belongs to the closed 
Kahler cone K(P^) C # 2 ( P E , C). Then the ring Q # * ( P S , C) is isomorphic 
to the Jacobian ring of a Laurent polynomial f<p{X) such that the equation 
f(p(X) = 0 defines an affine Calabi-Yau hypersurface Zf in the d-dimensional 
algebraic torus (C*)d where Zf is mirror symmetric with respect to Calabi-
Yau hypersurfaces in Px; (Theorem 8.4). Here by the mirror symmetry we 
mean the correspondence, based on the polar duality [6], between families of 
Calabi-Yau hypersurfaces in toric varieties. 

The properties II and III give a general view on the recent result of P. 
Aspinwall, B. Greene, and D. Morrison [3] who have shown, for a family of 
Calabi-Yau 3-folds W that their quantum cohomology ring QH*(W, C) does 
not change under a flop-type birational transformation (see also [1, 2]). 

IV: Assume that the first Chern class ci(Ps) of Ps is divisible by r, 
i.e., there exists an element h E i ? 2 ( P s , Z ) such that ci(Pu) = rh. Then 
Q ^ ( P E , C) has a natural Z/rZ-grading (Theorem 5.7). We remark that the 
ring QH*(Px, C) has no Z-grading. 

The paper is organized as follows. In Sections 2-4, we recall a definition 
of toric manifolds and standard facts about them. In Section 5, we define 
the quantum cohomology ring of toric manifolds and prove their properties. 
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In Section 6, we consider examples of the behavior of quantum cohomology 
rings under elementary birational transformations such as blow-ups and flops, 
we also consider the case of singular toric varieties. In Section 7, we give an 
combinatorial interpretation of the relation between the quantum cohomol
ogy rings and the ordinary cohomology rings. In Section 8, we show that 
the quantum cohomology ring can be interpreted as a Jacobian ring of some 
Laurent polynomial. Finally, in Section 9, we prove that our quantum coho
mology rings coincide with the quantum cohomology rings defined by sigma 
models on toric manifolds. 
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2 A definition of compact toric manifolds 

Toric varieties were considered in full generality in [9, 11]. For the general 
definition of toric variety which includes affine and quasi-projective toric vari
eties with singularities, it is more convenient to use the language of schemes. 
However, for our purposes, it will be sufficient to have a simplified more clas
sical version of the definition for smooth and compact toric varieties over C. 
This approach to compact toric manifolds was first proposed by M. Audin [4], 
and developed by D. Cox [8]. 

In order to obtain a d-dimensional compact toric manifold V', we need a 
combinatorial object E, a complete fan of regular cones, in a d-dimensional 
vector space over R. 

Let JV, M = Horn (AT, Z) be dual lattices of rank d, and iVR, M R their 
R-scalar extensions to d-dimensional real vector spaces. 

Definition 2.1 A convex subset a C NR is called a regular k-dimensional 
cone (k > 1) if there exist k linearly independent elements vi,...,Vk G N 
such that 

a = {fiiVi + • • • + /î jfc | /i; G R, //* > 0} , 

and {vi, . . . , V j b } is a subset of some Z-basis of N. In this case, we call 
V1 • • • 5 vk £ N the integral generators of a. 
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