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Quantum Cohomology Rings of Toric Manifolds 

Victor V. Batyrev 

1 Introduction 

The notion of quantum cohomology ring of a Kahler manifold V naturally 
appears in theoretical physics in the consideration of the so called topological 
sigma model associated with V ([16], 3a-b). If the canonical line bundle Ky of 
V is negative, then one recovers the multiplicative structure of the quantum 
cohomology ring of V from the intersection theory on the moduli space T\ of 
holomorphic mappings / of the Riemann sphere / : S 2 = C P 1 —* V where A 
is the homology class in H2(V, Z) of / ( C P 1 ) . 

If the canonical bundle Ky is trivial, the quantum cohomology ring was 
considered by C. Vafa as an important tool for explaining the mirror symmetry 
for Calabi-Yau manifolds [15]. 

The quantum cohomology ring QH^V, C) of a Kahler manifold V, un­
like the ordinary cohomology ring, have the multiplicative structure which 
depends on the class cp of the Kahler (1, l)-form corresponding to a Kahler 
metric g on V. When we rescale the metric g —• tg and put t —• oo, the 
quantum ring becomes the classical cohomology ring. For example, for the 
topological sigma model on the complex projective line C P 1 itself, the classi­
cal cohomology ring is generated by the class x of a Kahler (1, l)-form, where 
x satisfies the quadratic equation 

x2 = 0, (1) 
while the quantum cohomology ring is also generated by a:, but the equation 
satisfied by x is different: 

x2 — exp(-
( 
( 

A 
cp), (2) 

S. M. F. 
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À is a non-zero effective 2-cycle. Similarly, the quantum cohomology ring of d-
dimensional complex projective space is generated by the element x satisfying 
the equation 

d+l 

x ^ — exp 
(- ( 

( 
A 

ip). (3) 

The main purpose of this paper is to construct and investigate the quantum 
cohomology ring QH*(P%, C) of an arbitrary smooth compact d-dimensional 
toric manifold PE where cp is an element of the ordinary second cohomology 
group iJ 2 (Ps, C) . Since all projective spaces are toric manifolds, we obtain a 
generalization of above examples of quantum cohomology rings. 

According to the physical interpretation, a quantum cohomology ring is a 
closed operator algebra acting on the fermionic Hilbert space. For example, 
the equation (3) one should better write as an equations for a linear operator 
X corresponding to the cohomology class x: 

Xd+l = exp(- ) 
) 

y 
(p)ld. (4) 

It is convenient to define quantum rings by polynomial equations among 
generators. 

Definition 1.1 Let 
h(t, x) — E Cn(t)x

n 

be a one-parameter family of polynomials in the polynomial ring C[x], where 
x = {x{}iei is a set of variables indexed by J, t is a positive real number, J\f 
is a fixed finite set of exponents. We say that the polynomial 

h°°(x) = T. n 

is the limit of the family h(t,x) as t —• oo, if the point {c£°} n €j\/- of the 
(| AT | — l)-dimensional complex projective space is the limit of the one-
parameter family of points with homogeneous coordinates {cn{t)}neM-

Definition 1.2 Let Rt be a one-parameter family of commutative algebras 
over C with a fixed set of generators { r , } , t 6 R>o- We denote by Jt the ideal 
in C[a:] consisting of all polynomial relations among { r , } , i.e., the kernel of 
the surjective homomorphism C[x] —* Rt. We say that the ideal J00 is the 
limit of Jt as t —• oo, if any one-parameter family of polynomials h(t, x) G Jt 
(as in 1.1) has a limit, and J°° is generated as C-vector space by all these 
limits. The C-algebra 

R°° = C[x]/J°° 

will be called the limit of Rt. 
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Remark 1.3 In general, it is not true that if J°° = limf_KX>Jf, and Jt is 
generated by a finite set of polynomials {hi(t, x)..., /&*(£, # ) } , then J°° is 
generated by the limits { h 1 8 ( x ) . . , h8f>(x)}. The limit ideal J°° is generated 
by the limits hf>{x) only if the set of polynomials {hi(t,x)} form a Grobner-
type basis for Jt. 

In this paper, we establish the following basic properties of quantum coho­
mology rings of toric manifolds: 

I : If (p is an element in the interior of the Kahler cone K(P<z) C i? 2(Px;, C), 
then there exists a limit of QH^{PE C) as t —• oo, and this limit is isomorphic 
to the ordinary cohomology ring iJ*(Px;, C) (Corollary 5.5). 

II : Assume that two smooth projective toric manifolds P ^ and PE 2 are 
isomorphic in codimension 1, for instance, that Ps 1 is obtained from PE 2 

by a flop-type birational transformation. Then the natural isomorphism 
H2{P^C) = i J 2 (Ps 2 ,C) induces the isomorphism between the quantum 
cohomology rings 

QH;(PEI,C)^QH;(PE2,C) 

(Theorem 6.1). We notice that ordinary cohomology rings of Ps 1 and Ps 2 are 
not isomorphic in general. 

Il l : Assume that the first Chern class ci(Ps) of P^ belongs to the closed 
Kahler cone K(P^) C # 2 ( P E , C). Then the ring Q # * ( P S , C) is isomorphic 
to the Jacobian ring of a Laurent polynomial f<p{X) such that the equation 
f(p(X) = 0 defines an affine Calabi-Yau hypersurface Zf in the d-dimensional 
algebraic torus (C*)d where Zf is mirror symmetric with respect to Calabi-
Yau hypersurfaces in Px; (Theorem 8.4). Here by the mirror symmetry we 
mean the correspondence, based on the polar duality [6], between families of 
Calabi-Yau hypersurfaces in toric varieties. 

The properties II and III give a general view on the recent result of P. 
Aspinwall, B. Greene, and D. Morrison [3] who have shown, for a family of 
Calabi-Yau 3-folds W that their quantum cohomology ring QH*(W, C) does 
not change under a flop-type birational transformation (see also [1, 2]). 

IV: Assume that the first Chern class ci(Ps) of Ps is divisible by r, 
i.e., there exists an element h E i ? 2 ( P s , Z ) such that ci(Pu) = rh. Then 
Q ^ ( P E , C) has a natural Z/rZ-grading (Theorem 5.7). We remark that the 
ring QH*(Px, C) has no Z-grading. 

The paper is organized as follows. In Sections 2-4, we recall a definition 
of toric manifolds and standard facts about them. In Section 5, we define 
the quantum cohomology ring of toric manifolds and prove their properties. 
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In Section 6, we consider examples of the behavior of quantum cohomology 
rings under elementary birational transformations such as blow-ups and flops, 
we also consider the case of singular toric varieties. In Section 7, we give an 
combinatorial interpretation of the relation between the quantum cohomol­
ogy rings and the ordinary cohomology rings. In Section 8, we show that 
the quantum cohomology ring can be interpreted as a Jacobian ring of some 
Laurent polynomial. Finally, in Section 9, we prove that our quantum coho­
mology rings coincide with the quantum cohomology rings defined by sigma 
models on toric manifolds. 
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2 A definition of compact toric manifolds 

Toric varieties were considered in full generality in [9, 11]. For the general 
definition of toric variety which includes affine and quasi-projective toric vari­
eties with singularities, it is more convenient to use the language of schemes. 
However, for our purposes, it will be sufficient to have a simplified more clas­
sical version of the definition for smooth and compact toric varieties over C. 
This approach to compact toric manifolds was first proposed by M. Audin [4], 
and developed by D. Cox [8]. 

In order to obtain a d-dimensional compact toric manifold V', we need a 
combinatorial object E, a complete fan of regular cones, in a d-dimensional 
vector space over R. 

Let JV, M = Horn (AT, Z) be dual lattices of rank d, and iVR, M R their 
R-scalar extensions to d-dimensional real vector spaces. 

Definition 2.1 A convex subset a C NR is called a regular k-dimensional 
cone (k > 1) if there exist k linearly independent elements vi,...,Vk G N 
such that 

a = {fiiVi + • • • + /î jfc | /i; G R, //* > 0} , 

and {vi, . . . , V j b } is a subset of some Z-basis of N. In this case, we call 
V1 • • • 5 vk £ N the integral generators of a. 
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