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A rigidity theorem for transverse dynamics of real 
analytic foliations of codimension one 

Isao Nakai 

The purpose of this paper is to prove 

Theorem 1. Let (A/"Ti) , i = 1, 2, be real analytic and orientable foliations 
of n-manifolds of codimension 1 and h : (M^Ti) —» ( A f ^ , ^ ) a foliation 
preserving homeomorphism. Assume that all leaves of T\ are dense and there 
exists a leaf of T\ with holonomy group ^ 1, Z. Then h is transversely real 
analytic. 

This applies to prove the following topological rigidity of the Godbillon-Vey 
class of real analytic foliations of codimension one. 

Corollary 2. Let (M;, ^ ) , / i be as in Theorem 1. Then /**(GV(^2) = 
GV(^i) holds. 

Here GV(^i) € H3(M,R) denotes the Godbillon-Vey class of Ti, which 
is represented by the 3-form a A da with a C°° -1-form a on M such that 
d9 = 6 A a holds with a C°° -1-form 0 defining T. It is easy to see that the 
Godbillon-Vey class is invariant under C2-diffeomorphisms. Ghys, Tsuboi 
[9] and Raby [18] proved the invariance under C1-diffeomorphisms, while the 
invariance is known to fail in some C°-cases (see [5,9,11]). (Corollary 2 seems 
to admit the various generalisations allowing the existence of compact leaves. 
But we will not touch on those generalisations. See also the papers [5,7].) 

The proof of the C1 -invariance due to Ghys and Tsuboi is based on a certain 
rigidity for C1-conjugacies of transverse dynamics of foliations along compact 
leaves as well as minimal exceptional leaves cutting Cantor sets on transverse 
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sections. The proof of Theorem 1 is based on the topological rigidity theorem 

for pseudogroups of diffeomorphisms of R (Theorem 3(1)). 

To state Theorem 3 we prepare some notions. Let T+ be the pseudogroup 

of real analytic and orientation preserving diffeomorphisms of open neighbour­

hoods of the line R respecting 0. We call a mapping <f>: G — r + of a group G 

to the pseudogroup P£ a morphism if the set <f>(G)o of germs of <f)(f), f G G 

form a group and 6 induces a group homomorphism of G to d>(G)o- There­

fore <Kf ) - -u« f ) , o -><K f ) (u« f ) ) , ( u« f ) ) , is a real analytic diffeomorphism of open 

neighbourhoods of 0 G K. for / G G representing the germ of </>(/). We call 

<j>(G)o the germ of (/>(G) and say d is solvable (respectively commutative, etc) 

if </>(G)o is so. The orbit 0(x) of an x £R is the set of those xi joined by a se­

quence (u«f)),(u«(u«f))jhfd, with x = xo,.r,+i = ó(fi)(xj),Xi e Uftffri = 0 , . . . , / - 1 

for arbitrary ! > 0. The basin BQ(G) of 0 is the set of those x for which the 

closure of the orbit O(x) contains 0. If 4>{G) is non trivial, i.e. (j)(f) ^ id for an 

/ G G , B<l>(G) is an open neighbourhood of 0 [17]. Morphisms 

are topologically ( resp. Cr-) conjugate if there exists a homeomorphism (resp. 

C r-diffeomorphism) h : £7,0 —» h(U), 0 of open neighbourhoods of 0 such that 

u«f)),(u«f)),(u 

(u«f)),(u«f)),(u«f)),(u«f)),(u«f)),(u«f)),(u«f))(u«f)),(u«f)),(u«f)),, and ft o <j>(f) = ,/>(/) o ft 

holds on U^f) for all / G G. We call /? a linking homeomorphism (resp.linking 

diffeomorphism) and we denote h : d> —> 

T h e o r e m 3 ( T h e r ig idi ty t h e o r e m for ps eudogroups ) . Let <f>,yj : G — 

F£ be morphisms which are topologically conjugate with each other and h : 

</> —> V a Unking homeomorphism. 

(1) If (f>(G)o, V^(G)o are not isomorphic to Z and non trivial, the restriction 

h : 5<£(G) — 0 —* B^G) — 0 is a real analytic diffeomorphism. 

(2) If </>(G)oi V~>(G)o are non commutative, h is unique and there exist even 

positive integers i,j such that (u«f)),(u«f)),(u«f)),(u«f)),,(u«f)), is a real analytic 

diffeomorphism for e = ±1 . Here B« is the set of those x such that ex% G 

B<t>(G) and (u«f)), is the set of those x such that xJ(resp. - x3) G B^G) if m 

maps R€ to K+ (resp. R- ) . 
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Now we apply the above rigidity theorem to the analytic action of the 
surface group on the circle S1. Let Y>g be the oriented closed surface of genus 
g and T9 = 7Ti(S^). For r = 1 , . . . , oc and u, Difff.(51) denotes the group of 
orientation preserving Cr-diffeomorphisms of the circle. The suspension M of 
a homomorphism </> :T9 T DifFj. (S 1 ) is the quotient of S1 x D2 by the product 
Q x T with a discrete cocompaet subgroup T9 T C PSL(2, R) acting freely 
on the interior of the Poincaré disc D2. The second projection of S1 x D2 

induces the submersion of M onto Eg= D2/T with the fiber S 1 . Since the 
action </> x T respects the foliation of Sl x D2 by the discs x x D2,x E 5 1 , the 
suspension M is a foliated 5 1-bundle of which the fibres are the quotients of 
the discs. In this way the topology of foliated 5 1-bundles interchanges with 
that of the actions of T9 on S 1 . The Euler number eu(</>) of a homomorphism 
(j) :T9 Diff!^(51) is defined to be that of the 5 1-bundle associated to 0. 
The Milnor-Wood inequality [15,22].asserts 

\eu{ct>)\<\X(^g)\=,(u«f)),fhg. 

The Euler number enjoys the following relations with the orbit structure: 
(1) eu(</>) = 0 if there exists a finite orbit. 
(2) If eu(</>) ^ 0, there exist a minimal sei M CS1 of <j) , an x 6 M and 

an / E stab(x) such that (f)(f)\M ^ id [13], and if r = u all orbits are dense 
[6] (see also [16]), 

(3) If |eu(^)| = |x(S-) | and r > 2, all orbits are dense [6], 
where stab(rr) denotes the stabiliser of x consisting of / G T9 with <f)(f)(x) = 
x. Homomorphisms </>,!/>: I* DifF;(5 1) are Cs-conjugate if there exists 
a C5-diffeomorphism ft of 5 1 such that 4if) о h = h о <j>(f) holds for / G 
T9. We say Q,Y are topologically conjugate if s = 0, semi conjugate if h is 
monotone map of degree one (possibly discontinuous). We call h a linking 
homeomorphism and denote h : Q , Y . It is known that the Euler number 
(and the bounded Euler class) concentrate the homotopic property of the 
action, namely 

Theorem(Ghys [3] ).Q,Y are semi conjugate if and only if ,(u«f)),,(u«f)),(u«f)),, 
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in the bounded cohomology group ff6

2(r« : Z), where Xz € ^ ( D i f f ^ S 1 ) : 
Z) = Z is the generator, the bounded Euler class. 

Theorem (Matsumoto [13]). If en M = eu(V) = ±x(E, ) , 4,il> are semi 
conjugate, and if 2 < r, they are topologically conjugate with each other, 
and in particular, conjugate with a discrete cocompact subgroup of PSL(2 , R) 
naturally acting on S1 the boundary of the Poincaré disc. 

Theorem Ghys [8]. If a homomorphism Q :Tg- Diffj_(51) attains the 
maximum of \eu(Q)\ and 3 <r,Q is Cr-smoothly conjugate with a discrete 
cocompact subgroup of PSL(2 ,R) . 

In contrast to the above results, the properties of homomorphisms with 
|eu(*)| $ |x(Sp)| are less known (see [1G]). Applying Theorem 3 to the action 
of the stabiliser subgroup stab(:r) on (S 1 , x) for an x E S1, we obtain 

Corollary 4. Let /(0»/: T9 T9 T Diff^S 1 ) he homomorphisms with \eu(<f>)\, 
|eu(V>)| ^ 0, |x(E^)|, which are topologically conjugate, and h : T9 T ip a 
linking homeomorphism. Assume that for an x G 5 1 , the stabiliser subgroup 
stab(ar) C Tg of x is not isomorphic to Z and non trivial. Then h is a real 
analytic diffeomorphism and orientation preserving or reversing respectively 
whether eu(<f>) = eu(t/>) or eu(</>) = — eu(0). 

The statement remains valid for morphisms of groups G into Difff (S 1 ) 
replacing the condition on the Euler number by the existence of a dense orbit. 

The author would like to thank Matsumoto, Minakawa, Nishimori, Tsuboi 
and Moriyama for their helpful comments. 

2. SEQUENCE GEOMETRY 

In this paper /^ n^ denotes the rc-fold iteration / o . . . o / o f / : t f , - / ( 0 » ) 
in VI. Let X = {*,-}, y = {y,}, i = 1.2.... be monotone sequences of positive 
numbers decreasing to 0. Define the address function &ddy(x) of an x > 0 
relative to y to be the smallest integer /' such that yi < x. It is easy to see 

that addv(z) is a decreasing; function of x and /o...o/of/:tf,-/(0»//(0»/o...o/of/:tf 
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