Astérisque

C. ROCHE Densities for certain leaves of real analytic foliations

Astérisque, tome 222 (1994), p. 373-387 http://www.numdam.org/item?id=AST 1994 222 373 0>

© Société mathématique de France, 1994, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

DENSITIES FOR CERTAIN LEAVES OF REAL ANALYTIC FOLIATIONS

C. $ROCHE^1$

I.INTRODUCTION.

Let suppose an *n* dimensional real analytic manifold *M* be given. We will suppose *M* to be paracompact connected and oriented. A real analytic n-1foliation with singularities \mathcal{F} on *M* is determined by giving an open covering (U_i) of *M* together with real analytic integrable 1-forms $\omega_i \in \Omega^1(U_i)$ such that on the overlapping charts, $U_i \cap U_j \neq \emptyset$, there exists a non vanishing function $g_{i,j}: U_i \cap U_j \to \mathbf{R}^*$ such that $\omega_i = g_{i,j}\omega_j$. Leaves of \mathcal{F} on U_i are unions of the integral manifolds of the pfaffian equation $\omega_i = 0$.

The singular set of the foliation $\operatorname{Sing}(\mathcal{F})$ is the analytic subspace of M defined by the annulation of the forms ω_i . In local coordinates of M, each ω_i can be written as

$$\omega_i(x) = \sum_{l=1}^n a_l^i(x) dx^l$$

and locally $\operatorname{Sing}(\mathcal{F})$ is determined by the equations

$$a_1^i(x) = 0, \ldots, a_n^i(x) = 0 \qquad x \in U_i.$$

The hypothesis that the $g_{i,j}$ be non vanishing allowes to suppose that the singular set is of codimension at least 2. Such \mathcal{F} defines on $M \setminus \operatorname{Sing}(\mathcal{F})$ an n-1 dimensional analytic foliation: \mathcal{F}_{reg} . Leaves of \mathcal{F}_{reg} are called regular leaves of \mathcal{F} .

Morover if we suppose \mathcal{F} to be transversally orientable, as will be done in this paper, Theorem A and B of Cartan in the real case [3] show that we can glue the 1-forms in order to suppose that the foliation \mathcal{F} is given by a globally defined real analytic differential form ω , that is $\omega_i = \omega_{|U_i|}$.

Consider now a union Γ of regular leaves of such a foliation \mathcal{F} , Γ is an immersed n-1 real analytic submanifold of M. Γ is called a separating solution

¹This research was partially supported by Brazilian CNPq

by Khovanskii if there are two disjoint open sets, L_1 and L_2 of M such that $M \setminus \operatorname{Sing}(\mathcal{F}) \setminus \Gamma = L_1 \cup L_2$, $\Gamma = \overline{L_1} \setminus L_1 \setminus \operatorname{Sing}(\mathcal{F})$ and finally ω points inside L_1 all along Γ .

In [17] we generalize this notion introducing Rollian pfaffian hypersurfaces. A regular leaf V of \mathcal{F} is so called if for each analytic path $\gamma : [0, 1] \to M$ intersecting the set V twice, say $\gamma(0) \in V$ and $\gamma(1) \in V$ there is an intermediate point, say $\gamma(t), t \in [0, 1]$ where the path is tangent to \mathcal{F} . At this point, if \mathcal{F} is determined by the pfaff equation $\omega = 0$

$$\omega(\gamma(t)).\gamma'(t) = 0.$$

Such a Rollian pfaffian hypersurface (Rollian leaf or Rollian ph for short) will be denoted $\{V, \mathcal{F}, M\}$ to emphasize the pfaffian equation verified by V.

Khovanskii's Rolle theorem asserts that every separating solution of $\omega = 0$ is a union of Rollian ph. Separating solutions are not easy to find but, as it was shown in [17], an argument of Haefliger proves that if $M \setminus \text{Sing}(\mathcal{F})$ is simply connected, each regular leaf of \mathcal{F} is a Rollian ph.

In [17] we used this generalisation to prove the following general finiteness theorem.

Theorem on uniform finiteness. Let $\mathcal{F}_1, \ldots, \mathcal{F}_q$ be transversally oriented singular foliations on M. If X is a semianalytic subset of M for each compact set K of M there is a constant $b \in \mathbb{R}$ such that for any set of Rollian pfaffian hypersurfaces $\{V_i, \mathcal{F}_i, M\}, i = 1, \ldots, q$ the number of connected components of $X \cap V_1 \cap \cdots \cap V_q$ meeting K is bounded by b.

A carefull reading of the proof of this theorem in [17] shows that a separating manifold is in fact a locally finite union of Rollian ph as was shown by Khovanskii [5].

As an easy consequence of this result we can mention that a Rollian ph $\{V, \mathcal{F}, M\}$ is a real analytic submanifold of M closed in $M \setminus \text{Sing}(\mathcal{F})$.

In developping the ideas sketched in Khovanskii's work [5] [6] in joint work with R. Moussu, J.-M. Lion and J.-Ph. Rolin (started in [16]) we tried to consider Rollian ph just as building blocks for a theory similar to that of semianalytic sets. By different methods the same goal is pursued by Tougeron [19]. This idea leads to the problem of the behaviour of the boundary of a Rollian ph. At present time it is not known if the closure of a Rollian ph $\{V, \mathcal{F}, M\}, \overline{V}$ can be stratified with some regularity condition. In a forthcomming paper of F. Cano, J.-M. Lion and R. Moussu an important result on the regularity of the boundary $\overline{V} \setminus V$ of such a Rollian ph will be described. [2]. The study of the boundary of a sole Rollian ph $\{V, \mathcal{F}, M\}$ is most usefull for further research if we describe the structure of the boundary of an intersection $X \cap V$ where X is a semianalytic subset of M. If X is open connected and relatively compact in $M, X \cap V$ is a finite union of leaves of the restricted foliation $\mathcal{F}_{|_X}$ each of them is a Rollian ph in X. The behabiour of V at the ends of M is so permited in the case the foliation can be regularly continued.

Let's define a pfaffian subset of M as a finite intersection $W = X \cap V_1 \cap \cdots \cap V_q$ where X is any semianalytic subset of M and the V'_is are Rollian ph of foliations \mathcal{F}_i .

The following properties are known for the set $\partial W = \overline{W} \setminus W$. See [8][10].

Theorem on finiteness of the boundary. The set ∂W is locally arc connected. Moreover if $B_a(\rho)$ is the euclidean open ball of center a and radius ρ for $a \in \overline{W}$ the number of connected components of $\partial W \cap B_a(\rho)$ can be bounded by a constant depending only on the foliations \mathcal{F}_i but not on the particular Rollian ph chosen.

Let $C_y(A)$ be the tangent cone of $A \subset M$ at $y \in M$.

Curve selection lemma. Let $a \in \partial W$, $u \in C_a(W)$, with ||u|| = 1 be given, there is a semianalytic subset Y of M such that $W \cap Y$ is a union of paths $\gamma_i((0,1))$ one of them, say γ_0 , can be extended in a C^1 way at 0 by $\gamma_0(0) = a$ and $\gamma'_0(0) = u$.

These curves are pfaffian curves.

In this paper we show that Rollian ph have local volume properties similar to those of semianalytic and subanalytic sets.

A subset Y of \mathbb{R}^n has a k-dimensional density at $y \in \mathbb{R}^n$ if the k-dimensional volume of $B_y(\epsilon) \cap Y$, $vol_k(B_y(\epsilon) \cap Y)$ is finite for small enough $\epsilon > 0$ and the following limit exists

$$\Theta_k(Y,y) = \lim_{\epsilon \to 0^+} \frac{vol_k(B_y(\epsilon) \cap Y)}{\epsilon^k}.$$

This quantity is called density of Y at y. If these conditions are not fullfilled we can always consider the corresponding superior limit and inferior limit, which are denoted by $\bar{\Theta}_k(Y, y)$ and $\underline{\Theta}_k(Y, y) \in \bar{\mathbf{R}}_+$ respectively.

In a recent paper [7] Kurdyka and Raby show that subanalytic subsets have a density at every point. Our result is similar, but restricted to the case of Rollian ph as we cannot, at present time, obtain a general decomposition into graphs theorem for pfaffian sets.

Precisely, let M be an open semianalytic subset of \mathbb{R}^n

Theorem 1. Let $\{V, \mathcal{F}, M\}$ be a Rollian pfaffian hypersurface then V has a density at each point of \overline{V} .

The proof of this result uses the same idea of Kurdyka and Raby and needs a new result on decomposition of Rollian ph into graphs. This decomposition gives a precision to a similar result of Lion [8], [9] and is obtained in a more elementary way. Namely

Proposition 1. Let ω be an integrable real analytic 1-form, in a neighborhood of $0 \in \mathbb{R}^n$ and a small enough $\epsilon > 0$ be given. Then there is a finite number of hyperplans (H_i) and a subanalytic stratification \mathcal{N} of a ball $B_0(\rho)$ such that: if $\{V, \omega, B_0(\rho)\}$ is a Rollian ph and $N \in \mathcal{N}$ then either

 $V \cap N$ is included in a smooth submanifold of dimension less than n-1, or $V \cap N \subset H_i \oplus H_i^{\perp} \subset \mathbb{R}^n$ is the graph of a locally ϵ -lipschitzian analytic function on an open subset of H_i .

That is, up to a smaller dimensional set, each Rollian ph is a graph of an analytic function. This function can be supposed to have a very small derivative.

It is known that strong regularity conditions for stratified objects doesn't imply the existence of densities. Theorem 1 gives an interesting information on the good behaviour of the boundary of a Rollian ph even in case a theorem of regular stratification happens to be obtained.

The generalisation of theorem 1 to all pfaffian sets would be not difficult provided a result similar to Proposition 1 for several pfaffian equations can be proved.

II. TANGENTS TO SEMIANALYTIC SETS AND PFAFFIAN EQUATIONS.

Here we discuss a general stratification procedure preparing a graph decomposition of Rollian ph. In the first two paragraphs the discusion is fairly general and we restrict to the case of a single pfaffian equation in the third paragraph in order to get the proof of Proposition 1. We will use freely the theory of semianalytic sets [1] and stratifications [15]. A stratification is said to be adapted to a set if this set is a union of strata.

The proofs being local we will suppose from now on that M is an open semianalytic subset of \mathbb{R}^{n} .

1.Strongly analytic submanifolds. A subset X of M is a strongly analytic submanifold of M if it is semianalytic in M and a submanifold of M. That is locally at each point of X, X is given by the level set of an analytic submersion