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DENSITIES FOR CERTAIN LEAVES 
OF REAL ANALYTIC FOLIATIONS 

C. ROCHE 1 

I.INTRODUCTION. 

Let suppose an n dimensional real analytic manifold M be given. We will 
supose M to be paracompact connected and oriented. A real analytic n — 1 
foliation with singularities T on M is determined by giving an open covering 
(Ui) of M together with real analytic integrable 1-forms U{ G ̂ (Ui) such that 
on the overlapping charts, Ui fl Uj ^ 0, there exists a non vanishing function 
9ij ' U{ fl Uj —• R* such that = QijWj. Leaves of T on Ui are unions of the 
integral manifolds of the pfaffian equation uoi = 0. 

The singular set of the foliation Sing(^7) is the analytic subspace of M 
defined by the annulation of the forms In local coordinates of M, each U{ 
can be written as 

UJi(x) = n 

/=1 

a\(x)dxl 

and locally Sing(^) is determined by the equations 

a[(x) = 0,...,ai

n(x) = 0 x e Ui. 

The hypothesis that the gij be non vanishing allowes to suppose that the 
singular set is of codimension at least 2. Such T defines on M \ Sing(^) an 
n — 1 dimensional analytic foliation: Treg. Leaves of Treg are called regular 
leaves of T. 

Morover if we suppose T to be transversally orientable, as will be done in 
this paper, Theorem A and B of Cartan in the real case [3] show that we can 
glue the 1-forms in ordej to suppose that the foliation T is given by a globally 
defined real analytic differential form a;, that is uoi = u>\Ui' 

Consider now a union T of regular leaves of such a foliation T, T is an 
immersed n—1 real analytic submanifold of M. T is called a separating solution 
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by Khovanskii if there are two disjoint open sets, L\ ans L2 of M such that 
M\ Sing IF) \ r = LiUL2, T = Ll\Ll\ SingfJ7) and finally a; points inside 
Li all along I \ 

In [17J we generalize this notion introducing Roman plaman hypersurfaces. 
A regular leaf V of T is so called if for each analytic path 7 : [0,1] —• M inter­
secting the set V twice, say 7(0) G V and 7(1) £ V there is an intermediate 
point, say 7(4), £ G [0,1] where the path is tangent to T. At this point, if T 
is determined by the pfaff equation to = 0 

u(l(t)W (t) = 0. 

Such a Rollian pfaffian hypersurface (Rollian leaf or Rollian ph for short) 
will be denoted { V, T, M} to emphasize the pfaffian equation verified by V. 

Khovanskii's Rolle theorem asserts that every separating solution of u = 0 
is a union of Rollian ph. Separating solutions are not easy to find but, as 
it was shown in [17], an argument of Haefliger proves that if il/\Sing(^ r) is 
simply connected, each regular leaf of T is a Rollian ph. 

In [17] we used this generalisation to prove the following general finiteness 
theorem. 

Theorem on uniform finiteness. Let Fi,...,Fq he transversally oriented 
singular foliations on M. If X is a semianalytic subset of M for each compact 
set K of M there is a constant b £ R such that for any set of Rollian pfaffian 
hypersurfaces {Vi, «F,-, M } , i = 1 , . . . , q the number of connected components 
of X fl Vi H • • • fl Vq meeting K is bounded by b. 

A carefull reading of the proof of this theorem in [17] shows that a sepa­
rating manifold is in fact a locally finite union of Rollian ph as was shown by 
Khovanskii [5]. 

As an easy consequence of this result we can mention that a Rollian ph 
{V,^7, M } is a real analytic submanifold of M closed in M\Sing(J r). 

In developping the ideas sketched in Khovanskii's work [5] [6] in joint work 
with R. Moussu, J.-M. Lion and J.-Ph. Rolin (started in [16]) we tried to con­
sider Rollian ph just as building blocks for a theory similar to that of semian­
alytic sets. By different methods the same goal is pursued by Tougeron [19]. 
This idea leads to the problem of the behaviour of the boundary of a Rollian 
ph. At present time it is not known if the closure of a Rollian ph {V, J 7, M } , V 
can be stratified with some regularity condition. In a forthcomming paper of 
F. Cano, J.-M. Lion and R. Moussu an important result on the regularity of 
the boundary V \ V of such a Rollian ph will be described. [2]. 
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The study of the boundary of a sole Rollian ph { V, T, M} is most usefull for 
further research if we describe the structure of the boundary of an intersection 
X C\V where X is a semianalytic subset of M. If X is open connected and 
relatively compact in M, X fl V is a finite union of leaves of the restricted 
foliation T\x each of them is a Rollian ph in X. The behabiour of V at the 
ends of M is so permited in the case the foliation can be regularly continued. 

Let's define a pfaffian subset of M as a finite intersection W = X fl V\ fl 
• • • fl Vq where X is any semianalytic subset of M and the V(s are Rollian ph 
of foliations T%. 

The following properties are known for the set dW = W\ W. See [8] [10]. 
Theorem on finiteness of the boundary. The set dW is locally axe con­
nected. Morover if Bn(p) is the euclidean open hall of center a and radius 
p for a G W the number of connected components of dW fl Ba(p) can be 
bounded by a constant depending only on the foliations T{ but not on the 
particular Rollian ph chosen. 

Let Cy(A) be the tangent cone of .4 C M at y G M. 
Curve selection lemma. Let a G dW , u G Cn(W), with \\u\\ = 1 be given, 
there is a semianalytic subset Y of M such that W fl Y is a union of paths 
7i((0,1)) one of them, say 70, can be extended in a C1 way at 0 by 7o(0) = a 
and 7o(0) = u. 

These curves are pfaffian curves. 

In this paper we show that Rollian ph have local volume properties similar 
to those of semianalytic and subanalytic sets. 

A subset Y of R n has a k-dimensional density at y G R n if the k-dimensional 
volume of By(e) fl Y, volk(By{e) fl Y) is finite for small enough e > 0 and the 
following limit exists 

ek(Y,y)= lim 
6-̂ 0+ 

volk(By(E)nY) 
EN 

This quantity is called density of Y at y. If these conditions are not fullfilled 
we can always consider the corresponding superior limit and inferior limit, 
which are denoted by 0A?(Y, y) and 0 ^ ( Y , j/) G R+ respectively. 

In a recent paper [7] Kurdyka and Raby show that subanalytic subsets have 
a density at every point. Our result is similar, but restricted to the case oi 
Rollian ph as we cannot, at present time, obtain a general decomposition into 
graphs theorem for pfaffian sets. 

Precisely, let M be an open semianalytic subset of R n 
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T h e o r e m 1. Let {V,F,M} be a Rollian pfaffian hypersurface then V has a 
density at each point of V. 

The proof of this result uses the same idea of Kurdyka ans Raby and needs 
a new result on decomposition of Rollian ph into graphs. This decomposition 
gives a precision to a similar result of Lion [8], [9] and is obtained in a more 
elementary way. Namely 

P r o p o s i t i o n 1. Let u be an integrable real analytic 1-form, in a neighbor­
hood of 0 £ R n and a small enough e > 0 be given. Then there is a unite 
number of hyperplans (Hi) and a subanalytic stratification AT of a ball Bo(p) 
such that: if {V,CJ, Bo(p)} is a Rollian ph and N € N then either 

V f)N is included in a smooth submanifold of dimension less than n — 1, 
or V fl N C Hi © H¡ - C R n is the graph of a locally e-lipschitzian analytic 

function on an open subset of H¿. 

Tha t is, up to a smaller dimensional set, each Rollian ph is a graph of 
an analytic funtion. This function can be supposed to have a very small 
derivative. 

It is known tha t strong regularity conditions for stratified objects doesn't 
imply the existence of densities. Theorem 1 gives an interesting information 
on the good behaviour of the boundary of a Rollian ph even in case a theorem 
of regular stratification happens to be obtained. 

The generalisation of theorem 1 to all pfaffian sets would be not difficult 
provided a result similar to Proposition 1 for several pfaffian equations can 
be proved. 

I I . T A N G E N T S TO S E M I A N A L Y T I C SETS AND P F A F F I A N EQUATIONS. 

Here we discuss a general stratification procedure preparing a graph de­
composition of Rollian ph. In the first two paragraphs the discusión is fairly 
general and we restrict to the case of a single pfaffian equation in the third 
paragraph in order to get the proof of Proposition 1. We will use freely the 
theory of semianalytic sets [1] and stratifications [15]. A stratification is said 
to be adapted to a set if this set is a union of strata. 

The proofs being local we will suppose from now on tha t M is an open 
semianalytic subset of R n . 

1 .S trong ly ana ly t i c submani fo lds . A subset X of M is a strongly analytic 
submanifold of M if it is semianalytic in M and a submanifold of M . Tha t is 
locally at each point ofX , X is given by the level set of an analytic submersion 
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