Astérisque

MARCO BRUNELLA Vanishing holonomy and monodromy of certain centres and foci

Astérisque, tome 222 (1994), p. 37-48 http://www.numdam.org/item?id=AST 1994 222 37 0>

© Société mathématique de France, 1994, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

VANISHING HOLONOMY AND MONODROMY OF CERTAIN CENTRES AND FOCI

MARCO BRUNELLA

Introduction

Let $\omega(x, y) = A(x, y)dx + B(x, y)dy = 0$ be the germ of an analytic differential equation on \mathbf{R}^2 , with an algebraically isolated singularity at the origin: $A(0,0) = B(0,0) = 0, \dim_{\mathbf{R}} \frac{\mathbf{R}\{x,y\}}{(A,B)} < +\infty.$

The singularity $\omega = 0$ is called *monodromic* if there are not separatrices at 0. In this case, given a germ of an analytic embedding $(\mathbf{R}^+, 0) \stackrel{\tau}{\hookrightarrow} (\mathbf{R}^2, 0)$ transverse to ω outside 0, it is possible to define a *monodromy map* $P_{\omega,\tau}$: $(\mathbf{R}^+, 0) \rightarrow (\mathbf{R}^+, 0)$, following clockwise the solutions of $\omega = 0$; $P_{\omega,\tau}$ is a germ of homeomorphism of $(\mathbf{R}^+, 0)$ analytic outside 0. If $P_{\omega,\tau} = id$ then $\omega = 0$ is called *centre*. Otherwise $P_{\omega,\tau}$ is a contraction or an expansion (by the results of Écalle, Il'yashenko, Martinet, Moussu, Ramis... on "Dulac conjecture") and $\omega = 0$ is called *focus*.

The simplest monodromic singularities are those for which the linear part M_{ω} of the dual vector field $v(x, y) = B(x, y) \frac{\partial}{\partial x} - A(x, y) \frac{\partial}{\partial y}$ is nondegenerate, i.e. invertible. We distinguish two situations:

i) the eigenvalues λ , μ of M_{ω} are complex conjugate, non real, with real part different from zero. Then $\omega = 0$ is a focus and it is analytically equivalent to $\omega_{lin} = 0$, where ω_{lin} denotes the linear part of ω (Poincarè's linearization theorem).

ii) the eigenvalues λ, μ of M_{ω} are complex conjugate, non real, with zero

real part. Then if $\omega = 0$ is a centre there exists an analytic first integral (Lyapunov-Poincarè theorem, see [Mou1] and references therein) and $\omega = 0$ is analytically equivalent to xdx + ydy = 0. If $\omega = 0$ is a focus the analytic classification is a difficult problem, which requires the theory of Écalle-Martinet-Ramis-Voronin to pass from the formal classification to the analytic one ([M-R]). The monodromy is an analytic diffeomorphism tangent to the identity, and two such equations are analytically equivalent if and only if their monodromies are ([M-R]).

In this paper we shall study the simplest degenerate monodromic singularities, i.e. those with $\lambda = \mu = 0$, $\omega_{lin} \neq 0$, and with "generic" higher order terms. Modulo a change of coordinates ([Mou2]), we may work in the following class.

Definition. Let $\omega = Adx + Bdy = 0$ be the germ of an analytic differential equation on \mathbb{R}^2 , with an algebraically isolated singularity at 0. This singularity is called *monodromic semidegenerate* if the first nonzero quasihomogeneous jet of type (1,2) of ω is

$$\omega_0(x,y) = x^3 dx + (y + ax^2) dy$$

with $a^2 < 2$. Notation: $\omega \in MSD(a)$.

We will denote by P_{ω} the monodromy map of $\omega \in MSD(a)$ corresponding to the embedding $(\mathbf{R}^+, 0) \hookrightarrow (\mathbf{R}^2, 0), t \mapsto (t, 0)$. P_{ω} is a germ of analytic diffeomorphism tangent to the identity ([Mou2]), and we may consider P_{ω} as the restriction to \mathbf{R}^+ of a germ of biholomorphism of $(\mathbf{C}, 0)$, tangent to the identity, again denoted by P_{ω} .

Let $\omega \in MSD(a)$ and let Ω be the germ of holomorphic 1-form on \mathbb{C}^2 obtained by complexification of ω . Using a resolution of the singularity we may define as in [Mou3] and [C-M] the vanishing holonomy of Ω : it is a subgroup $H(\Omega) \subset Bh(\mathbf{C}, 0) = \{ \text{ group of germs of biholomorphisms of } (\mathbf{C}, 0) \},\$ generated by $f, g \in Bh(\mathbf{C}, 0)$ satisfying the relation $(f \circ g)^2 = id.$

Our result is a computation of P_{ω} in terms of $H(\Omega)$. A similar result was remarked by Moussu in the (simpler) case of nondegenerate monodromic singularities ([Mou1]).

Theorem. Let $\omega = 0$ be monodromic semidegenerate, then

$$P_{\omega} = [f,g]$$

In particular, $H(\Omega)$ is abelian if and only if $\omega = 0$ is a centre. This means, by [C-M], that a nontrivial space of "formal-analytic moduli" can appear only if $\omega = 0$ is a centre (and a = 0, see below): for the foci, formal equivalence \Rightarrow analytic equivalence. Hence our situation is very different from the situation of equations of the type xdx + ydy + ... = 0, where the difficult case is the case of foci whereas all the centres are analytically equivalent (here the vanishing holonomy is always abelian, generated by a single $f \in Bh(\mathbf{C}, 0)$, and the monodromy is given by f^2 , see [Mou1]). On the other hand, it is no more true that the monodromy characterizes the equation: it may happen that $\omega_1, \omega_2 \in MSD(a)$ have the same monodromy without being analytically equivalent.

A consequence of the above relation between monodromy and vanishing holonomy is the following normal form theorem for centres, based again on the results of [C-M]. Let us before remark that $\omega_0(x, y) = x^3 dx + (y + ax^2) dy = 0$ is a centre for any $a \in \mathbf{R}$ (but a first integral exists if and only if a = 0).

Corollary 1. Let $\omega \in MSD(a)$ be a centre and let $a \neq 0$, then the germ $\omega = 0$ is analytically equivalent to $\omega_0 = 0$.

We don't know a similar explicit and "simple" (polynomial?) normal form for foci, even in the case $a \neq 0$; but the triviality of the space of formal-

M. BRUNELLA

analytic moduli seems here a useful tool. The classification of centres with a = 0 requires arguments of the type Écalle - Martinet - Ramis - Voronin (cfr. [C-M]).

As another corollary of the above theorem we give a positive answer to a question posed by Moussu in [Mou2].

Corollary 2. Let $\omega = 0$ be a monodromic semidegenerate centre, then there exists a nontrivial analytic involution $I : (\mathbf{R}^2, 0) \to (\mathbf{R}^2, 0)$ which preserves the solutions of $\omega = 0$: $I^*(\omega) \wedge \omega = 0$.

The above computation may be generalized to the case of germs ω whose first nonzero quasihomogeneous jet of type (1, n) is

$$\omega_0(x,y) = x^{2n-1}dx + (y+ax^n)dy$$

with $a^2 < \frac{1}{4}n$ ([Mou2]). The vanishing holonomy $H(\Omega)$ for these germs is generated by $f,g \in Bh(\mathbf{C},0)$ satisfying $(f \circ g)^n = id$ ([C-M]). But now, if $n \geq 3$, the relation between commutativity of $H(\Omega)$ and triviality of P_{ω} becomes more complicated; in particular, it is no more true that there is equivalence between " $H(\Omega)$ abelian" and " $P_{\omega} = id$ ".

The computation of P_{ω} in terms of $H(\Omega)$ for $n \geq 3$ is straightforward, once one has understood the case n = 2. Hence, for sake of simplicity and clarity, we have choose to limit ourselves to the semidegenerate monodromic singularities.

Acknowledgements: I thank R. Moussu and A. Verjovsky who read the manuscript and suggested me some improvements of the exposition.

Resolution of singularities and vanishing holonomy

Let $\omega \in MSD(a)$ and let Ω be its complexification. We recall the desingularization of Ω and the construction of $H(\Omega)$ ([C-M], [Mou3]).