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VANISHING HOLONOMY AND M O N O D R O M Y 

OF CERTAIN CENTRES A N D FOCI 

M A R C O B R U N E L L A 

Introduction 

Let u(x, y) = A(x, y)dx + B(x, y)dy = 0 be the germ of an analytic differ­

ential equation on R 2 , with an algebraically isolated singularity at the origin: 

.4(0,0) = £ ( 0 , 0 ) = 0, dimR 

R{ x,y} 
(A,B) < + O G , 

The singularity u = 0 is called monodromic if there are not séparatrices 

at 0. In this case, given a germ of an analytic embedding (R+,o) 
T 

: R 2 , O ) 

transverse to u outside 0, it is possible to define a monodromy map P -
1 U>,T* 

( R + , 0 ) — > (R + , o ) , following clockwise the solutions of u = 0; PUiT is a germ 

of homeomorphism of ( R + , 0 ) analytic outside 0. if J V = id then u = 0 is 

called centre. Otherwise Pu%r is a contraction or an expansion (by the results 

of Ecalle, Il'yashenko, Martinet, Moussu, Ramis... on "Dulac conjecture") 

and u) = 0 is called focus. 

The simplest monodromic singularities are those for which the linear part 

Mi of the dual vector field v(x,y) t 
t 

B(x,y) q 
q5 -A(x,y) d 

dy is nondegenerate, 

i.e. invertible. We distinguish two situations: 

i) the eigenvalues A, /i of Mu are complex conjugate, non real, with real part 

different from zero. Then UJ = 0 is a focus and it is analytically equivalent 

to ujun = 0, where uun denotes the linear part of u (Poincare's linearization 

theorem). 

ii) the eigenvalues A,/i of Mw are complex conjugate, non real, with zero 

S. M. F. 
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real part. Then if u = 0 is a centre there exists an analytic first integral 

(Lyapunov-Poincare theorem, see [Moul] and references therein) and u = 0 

is analytically equivalent to xdx + ydy = 0. If u = 0 is a focus the ana­

lytic classification is a difficult problem, which requires the theory of Ecalle-

Martinet-Ramis-Voronin to pass from the formal classification to the analytic 

one ([M-R]). The monodromy is an analytic diffeomorphism tangent to the 

identity, and two such equations are analytically equivalent if and only if their 

monodromies are ([M-R]) . 

In this paper we shall study the simplest degenerate monodromic sin­

gularities, i.e. those with A = \i = 0, ooun ^ 0, and with "generic" higher 

order terms. Modulo a change of coordinates ([Mou2]), we may work in the 

following class. 

Definition. Let u = Adx + Bdy = 0 be the germ of an analytic differ­

ential equation on R 2 , with an algebraically isolated singularity at 0. This 

singularity is called monodromic semidegenerate if the first nonzero quasiho-

mogeneous jet of type (1,2) of u is 

w0 ( z , y ) = x3dx + (y + 2X2 )dy 

with a 2 < 2. Notation: we MSD (a). 

We will denote by JPw the monodromy map of u e MSD{a) corresponding 

to the embedding ( R + , o ) ( R 2 , 0 ) , t (*,0). Pc is a germ of analytic 

diffeomorphism tangent to the identity ([Mou2]), and we may consider Pu as 

the restriction to R + of a germ of biholomorphism of ( C , 0 ) , tangent to the 

identity, again denoted by Pu, 

Let CJ G MSD(a) and let Q be the germ of holomorphic 1-form on C 2 

obtained by complexification of LO. Using a resolution of the singularity we 

may define as in [Mou3] and [C-M] the vanishing holonomy of fi: it is a 
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subgroup H ( u ) C B h ( C , 0) = { group of germs of biholomorphisms of ( C , 0 ) } , 

generated by / , g G J B / I ( C , 0 ) satisfying the relation ( / o g)z = id. 

Our result is a computation of Pw in terms of H ( Q ) . A similar result 

was remarked by Moussu in the (simpler) case of nondegenerate monodromic 

singularities ( [Moul] ) . 

Theorem. Let u = 0 be monodromic semi degenerate, then 

Pu> = [f, g] 

In particular, H ( Q ) is abelian if and only if u = 0 is a centre. This 

means, by [C-M], that a nontrivial space of "formal-analytic moduli" can 

appear only if u = 0 is a centre (and a = 0, see below): for the foci, formal 

equivalence analytic equivalence. Hence our situation is very different from 

the situation of equations of the type xdx + ydy + ... = 0, where the difficult 

case is the case of foci whereas all the centres are analytically equivalent (here 

the vanishing holonomy is always abelian, generated by a single / G B h ( C , 0) , 

and the monodromy is given by / 2 , see [Moul]) . On the other hand, it is no 

more true that the monodromy characterizes the equation: it may happen 

that <Ji,U2 £ M S D { a ) have the same monodromy without being analytically 

equivalent. 

A consequence of the above relation between monodromy and vanishing 

holonomy is the following normal form theorem for centres, based again on the 

results of [C-M]. Let us before remark that u;o(#> y) = x3dx + (y + ax2)dy = 0 

is a centre for any a G R (but a first integral exists if and only if a = 0). 

Corollary 1. Let u G M S D ( a ) be a centre and let a ^ 0, then the germ 

ou = 0 is analytically equivalent to ¿ 0 = 0. 

We don't know a similar explicit and "simple" (polynomial?) normal 

form for foci, even in the case a ^ 0; but the triviality of the space of formal-
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analytic moduli seems here a useful tool. The classification of centres with 

a = 0 requires arguments ot the type Ecalle - Martinet - Ramis - Voronin (cfr. 

[C-M]). 

As another corollary of the above theorem we give a positive answer to 

a quescion posed by Moussu m Mou2J 

Corollary 2. Let u = 0 be a monodromic semidegenerate centre, then 

there exists a nontrivial analytic involution I : (R 2 ,o) (R 2 ,o) which pre­

serves the solutions of u = 0: I*(u) ACJ = 0. 

The above computation may be generalized to the case of germs u whose 

first nonzero quasihomogeneous jet of type ( l , n ) is 

wo(s ,y ) = 'Zn-l 
X 

dx + (y + axn)dy 

with a2 < 1/4 n ([Mou2]). Thè vanishing holonomy H(Q) for these germs is 

generated by f,g £ JB/i(C,0) satisfying ( / o g)n = id ([C-M]). But now, 

if n > 3, the relation between commutativity of H(Q) and triviality of Pu 

becomes more complicated; in particular, it is no more true that there is 

equivalence between "iJ(J7) abelian" and "P„ = id". 

The computation of P^ in terms of H(Q,) for n > 3 is straightforward, 

once one has understood the case n = 2. Hence, for sake of simplicity and 

clarity, we have choose to limit ourselves to the semidegenerate monodromic 

singularities. 

Acknowledgements: I thank R, Moussu and A. Verjovsky who read the 

manuscript and suggested me some improvements of the exposition. 

Resolution of singularities and vanishing holonomy 

Let u G MSD(a) and let Q be its complexification. We recall the desin-

gularization of Q and the construction of H(Q) ([C-M], [Mou3]). 
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