Astérisque

D. CERVEAU ALCIDES LINS NETO Codimension one foliations in CP^n , $n \ge 3$, with Kupka components

Astérisque, tome 222 (1994), p. 93-133 <http://www.numdam.org/item?id=AST_1994_222_93_0>

© Société mathématique de France, 1994, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

CODIMENSION ONE FOLIATIONS IN $\mathbb{C}P^n$, $n \ge 3$, WITH KUPKA COMPONENTS

D. Cerveau and A. Lins Neto

1. INTRODUCTION

1.1 – Basic notions:

A codimension one holomorphic foliation in a complex manifold M can be given by an open covering $(U_{\alpha})_{\alpha \in A}$ of M and two collections $(w\alpha)_{\alpha \in A}$ and $(g_{\alpha\beta})_{U_{\alpha} \cap U_{\beta} \neq \phi}$, such that:

- (a) For each $\alpha \in A$, w_{α} is an integrable $(w_{\alpha} \wedge dw_{\alpha} = 0)$ holomorphic 1-form in U_{α} , and $w_{\alpha} \neq 0$.
- (b) If $U_{\alpha} \cap U_{\beta} \neq \phi$ then $w_{\alpha} = g_{\alpha\beta} \cdot w_{\beta}$, where $g_{\alpha\beta} \in \mathcal{O}^{*}(U_{\alpha} \cap U_{\beta})$.

Recall that $\mathcal{O}(V)$ is the set of holomorphic functions in V and $\mathcal{O}^*(V) = \{g \in \mathcal{O}(V) | g(p) \neq 0 \ \forall p \in V\}.$

Let $\mathcal{F} = ((U_{\alpha})_{\alpha \in A}, (w_{\alpha})_{\alpha \in A}, (g_{\alpha\beta})_{U_{\alpha} \cap U_{\beta} \neq \phi})$ be a foliation in M. The singular set of \mathcal{F} , $S(\mathcal{F})$, is by definition $S(\mathcal{F}) = \bigcup_{\alpha \in A} S_{\alpha}$, where $S_{\alpha} = \{p \in \mathcal{F}\}$

 $U_{\alpha}|w_{\alpha}(p) = 0$ }. It follows from (a) and (b) that $S(\mathcal{F})$ is a proper analytic subset of M. The integrability condition implies that for each $\alpha \in A$ we can define a foliation \mathcal{F}_{α} (in the usual sense) in $U_{\alpha} - S_{\alpha}$, whose leaves are solutions of $w_{\alpha} = 0$. Condition (b) implies that if $U_{\alpha} \cap U_{\beta} \neq \phi$, then \mathcal{F}_{α} coincides with \mathcal{F}_{β} in $U_{\alpha} \cap U_{\beta} - S(\mathcal{F})$. Hence we have a codimension one foliation defined in $M - S(\mathcal{F})$. A leaf of \mathcal{F} is by definition, a leaf of this foliation.

If $S(\mathcal{F})$ has codimension one components, then it is possible to find a new foliation $\mathcal{F}_1 = ((U_{\alpha})_{\alpha \in A}, (\tilde{w}_{\alpha})_{\alpha \in A}, (\tilde{g}_{\alpha\beta})_{U_{\alpha} \cap U_{\beta} \neq \phi})$ such that $S(\mathcal{F}_1)$ has no S. M. F.

Astérisque 222** (1994)

components of codimension one, $S(\mathcal{F}_1) \subset S(\mathcal{F})$, and the leaves of \mathcal{F} and $\mathcal{F}_1|(M - S(\mathcal{F}))$ are the same (in fact $w_{\alpha} = f_{\alpha} \cdot \tilde{w}_{\alpha}, f_{\alpha} \in \mathcal{O}(U_{\alpha})$). From now on all the foliatons that we will consider will not have codimension 1 singular components.

1.2 – The Kupka set:

In 1964 I.Kupka proved the following result (see [K]);

1.2.1 THEOREM. Let w be an integrable holomorphic 1-form defined in a neighborhood of $p \in \mathbb{C}^n$, $n \geq 3$. Suppose that $w_p = 0$ and $dw_p \neq 0$. Then there exists a holomorphic coordinate system (x, y, z_3, \ldots, z_n) defined in a neighborhood U of p such that x(p) = y(p) = 0 and w = A(x, y)dx + B(x, y)dy in this coordinate system, where A(0,0) = B(0,0) = 0 and $\frac{\partial B}{\partial x}(0,0) - \frac{\partial A}{\partial y}(0,0) \neq 0$.

In fact Kupka proved this result in the real context, but his proof adapts very well in the holomorphic case.

1.2.2 Remarks: Let w, A, B and U be as in Theorem 1.2.1.

- (i) The set {(x, y, z₃,..., z_n) ∈ U|x = y = 0} = V is containned in U. If the singular set S of w has no codimension 1 components, then V is a smooth codimension 2 piece of S and (0,0) is an isolated solution of A(x, y) = B(x, y) = 0. By taking a smaller U if necessary we can suppose that S ∩ U = V.
- (ii) The foliation induced by w = 0 in U is equivalent to the product of the singular foliation in U ∩ {z₃ = c₃,..., z_n = c_n} ⊂ C² × (c₃,..., c_n) given by Adx + Bdy = 0 (or by the differential equation ẋ = -B, ẏ = A), by the codimension 2 foliation in U given by x = c₁, y = c₂. The singular set in this case is V = {x = y = 0}.

Let $\mathcal{F} = ((U_{\alpha})_{\alpha \in A}, (w_{\alpha})_{\alpha \in A}, (g_{\alpha\beta})_{U_{\alpha} \cap U_{\beta} \neq \phi})$ be a foliation on M. We define the Kupka set of \mathcal{F} by $K(\mathcal{F}) = \bigcup_{\alpha \in A} K_{\alpha}$, where

$$K_{\alpha} = \{ p \in U_{\alpha} | w_{\alpha}(p) = 0 \text{ and } dw_{\alpha}(p) \neq 0 \}$$

Since $w_{\alpha} = g_{\alpha\beta}w_{\beta}$ in $U_{\alpha} \cap U_{\beta} \neq \phi$, we have $dw_{\alpha} = dg_{\alpha\beta} \wedge w_{\beta} + g_{\alpha\beta}dw_{\beta}$ which implies that $K_{\alpha} \cap U_{\beta} = K_{\beta} \cap U_{\alpha}$. It follows from (i) that $K(\mathcal{F})$ is a smooth complex codimension 2 submanifold of M. In fact $K(\mathcal{F}) = S(\mathcal{F}) - W(\mathcal{F})$ where $W(\mathcal{F}) = \bigcup_{\alpha \in A} W_{\alpha}, W_{\alpha} = \{p \in U_{\alpha} | w_{\alpha}(p) = 0 \text{ and } dw_{\alpha}(p) = 0\}$. Observe

that $W(\mathcal{F})$ is an analytic subset of M.

1.2.3 Definition: We say that K is a Kupka component of \mathcal{F} if K is an irreducible component of $S(\mathcal{F})$ and $K \subset K(\mathcal{F})$. Observe that a Kupka component of \mathcal{F} is in particular a smooth connected codimension 2 analytic subset of M.

Let V be a connected codimension 2 submanifold of $K(\mathcal{F})$. It follows from the local product structure (see 1.2.1 and 1.2.2) that there exists a covering $(B_i)_{i \in I}$ of V by open sets of M, a collection of submersions $(\psi_i)_{i \in I}, \psi_i: B_i \to \mathbb{C}^2$, and a 1-form w = A(x, y)dx + B(x, y)dy defined in a neighborhood C of $(0,0) \in \mathbb{C}^2$, such that:

- (a) $\psi_i(B_i) \subset C$ for evere $i \in I$.
- (b) (0,0) is the unique singularity of w in C and $V \cap B_i = \psi_i^{-1}(0,0)$, for every $i \in I$.
- (c) $\mathcal{F}|B_i$ is represented by $w_i^* = \psi_i^*(w)$.

We will say that \mathcal{F} has transversal type w or X along V, where X is the vector field $-B\partial/\partial x + A\partial/\partial y$. The linear transversal type of \mathcal{F} along V is, by definition, the linear part of X at (0,0) in Jordan's canonical form, modulo multiplication by non-zero constants. Let L be the linear part of X at (0,0) in Jordan's canonical form. We have the following possibilities:

- (i) L is diagonal with eigenvalues $\lambda_1 \neq \lambda_2$.
- (ii) L is diagonal with eigenvalues $\lambda_1 = \lambda_2 \neq 0$.
- (iii) L is not diagonal with eigenvalues $\lambda_1 = \lambda_2 \neq 0$.

Observe that, since $\frac{\partial B}{\partial x}(0,0) - \frac{\partial A}{\partial y}(0,0) \neq 0$, we have $tr(L) \neq 0$ and so the possibilities $\lambda_1 = \lambda_2 = 0$ or $\lambda_1 = -\lambda_2$ cannot occur.

In case (i) the two eigendirections of L induce via the submersions ψ_i , two

line subbundles of the normal bundle $\nu(V)$ of V in M. We will call these line bundles L_1 (relative to λ_1) and L_2 (relative to λ_2). It is clear that $\nu(V) = L_1 \oplus L_2$. In case (iii) L has just one eigendirection which induces in the same way a line subbundle L_1 of $\nu(V)$. In the case of Kupka components we have the following (see [G.M- L.N]):

1.2.4 - THEOREM. Let $\dim(M) \ge 3$ and K be a Kupka compact component of \mathcal{F} . We have:

- (a) In case (i), if $C(L_i)$ is the first Chern class of L_i , i = 1, 2, considered in $H^2(K, \mathbb{C})$, then $\lambda_1 C(L_2) = \lambda_2 C(L_1)$.
- (b) In case (iii) we have $C(L_1) = 0$.
- (c) In case (i), if $\lambda_2/\lambda_1 = p/q$, where $p, q \in \mathbb{Z}_+$ are relatively primes and $C(L_1) \neq 0$, then X is linearizable.

1.3 - Codimension 1 foliations of $\mathbb{C}P^n$, $n \geq 3$:

A holomorphic foliation in $\mathbb{C}P^n$ can be given by an integrable 1-form $w = \sum_{i=0}^{n} w_i dz_i$ $(w \wedge dw = 0)$, with the following properties:

(a) w_0, \ldots, w_n are homogeneous polynomials of the same degree ≥ 1 .

(b)
$$i_R(w) = \sum_{i=0}^n w_i z_i \equiv 0 \ (R = \sum_{i=0}^n z_i \partial / \partial z_i \text{ is the radial vector field}).$$

This form can be obtained as follows: let $\pi: \mathbf{C}^{n+1} - \{0\} \to \mathbf{C}P^n$ be the canonical projection and $\mathcal{F} = ((U_{\alpha})_{\alpha \in A}, (w_{\alpha})_{\alpha \in A}, (g_{\alpha\beta})_{U_{\alpha} \cap U_{\beta} \neq \phi})$ be a foliation in $\mathbf{C}P^n$. Let $\mathcal{F}^* = ((U_{\alpha}^*)_{\alpha \in A}, (w_{\alpha}^*)_{\alpha \in A}, (g_{\alpha\beta}^*)_{U_{\alpha} \cap U_{\beta} \neq \phi})$ be the foliation in $\mathbf{C}^{n+1} - \{0\}$ defined by $U_{\alpha}^* = \pi^{-1}(U_{\alpha}), w_{\alpha}^* = \pi^*(w_{\alpha})$ and $g_{\alpha\beta}^* = g_{\alpha\beta} \circ \pi$. Since for $U_{\alpha}^* \cap U_{\beta}^* \cap U_{\gamma}^* \neq \phi$ we have $g_{\alpha\beta}^* \cdot g_{\beta\gamma}^* \cdot g_{\gamma\alpha}^* = 1$, we can use Cartan's solution of the multiplicative Cousin's problem in $\mathbf{C}^{n+1} - \{0\}$ (see [**G-R**]) to obtain an integrable 1-form η in $\mathbf{C}^{n+1} - \{0\}$ such that for any $\alpha \in A$, we have $\eta | U_{\alpha}^* = h_{\alpha} \cdot w_{\alpha}^*$, where $h_{\alpha} \in \mathcal{O}^*(U_{\alpha}^*)$. From Hartog's Theorem (see [**G-R**]), η extends to a holomorphic 1-form μ in \mathbf{C}^{n+1} . If $\mu = \mu_k + \mu_{k+1} + \ldots$ is the