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CODIMENSION O N E FOLIATIONS IN C P n , n > 3, 

W I T H K U P K A C O M P O N E N T S 

D. Cerveau and A. Lins Neto 

1. INTRODUCTION 

1.1 - Bas ic notions: 

A codimension one holomorphic foliation in a complex manifold M can be 

given by an open covering (Ua)aeA of M and two collections (wa)aqA and 

(9ap)uar\Upj:<j>, such that: 

(a) For each a G A, wa is an integrable (wa A dwa = 0) holomorphic 1-form 

in Î7 a , and wa ^ 0. 

(b) If VOL fl Up ^ <f> then wa = gap • wp, where # a / 3 € (9*(i7 a D Up). 

Recall that 0(V) is the set of holomorphic functions in V and 0*(V) = 

{g e o(V)\g(P) ? o Vp e v } . 
Let ^ = f f J 7 r v ) r v < = 4 , ( r ^ ) / v C 4 Y ^ m r 7 . n r 7 ^ ^ be a foliation in Af. The sin­

guiar set of T. SiT), is by definition S (J7) = 
EA 

S a , where 5 Q = {p G 

# a | w a ( p ) = 0 } . It follows from (a) and (b) that S ( J 7 ) is a proper analytic 

subset of M. The integrability condition implies that for each a G A we can 

define a foliation Ta (in the usual sense) in Ua — Sa^ whose leaves are solutions 

of wa = 0. Condition (b) implies that if UaHUp ^ then Ta coincides with 

Tp in Ua n Up - S ( J 7 ) . Hence we have a codimension one foliation defined in 

M - S ( J 7 ) . A leaf of T is by definition, a leaf of this foliation. 

If SiJ7) has codimension one components, then it is possible to find a new 

foliation Ti = {Ua)a€A, (wQ)aGA, (9otß)uanUß?4>) such that (SF1) ) has no 
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components of codimension one, 5 ( ^ i ) C S{F), and the leaves of T and 

T\\{M — S(T)} are the same (in fact wa = fa • wa, fa £ 0(Ua)). Prom now 

on all the foliatons that we will consider will not have codimension 1 singular 

components. 

1.2 - T h e Kupka set: 

In 1 9 6 4 I.Kupka proved the following result (see [K]); 

1 . 2 . 1 T H E O R E M . Let w be an integrable holomorphic 1-form defined in a 

neighborhood ofp E Cn, n > 3 . Supose that wp = 0 and dwp ^ 0 . Then there 

exists a holomorphic coordinate system (# , y, 2 3 , . . . , zn) defined in a neighbor­

hood Uofp such that x(p) = y(p) = 0 and w = A(x, y)dx + J5 (x , y)dy in this 

coordinate system, where A(0,0) = B(0,0) 0 and If (0,0) If (0,0) ¿ 0 . 

In fact Kupka proved this result in the real context, but his proof adapts 

very well in the holomorphic case. 

1.2.2 Remarks: Let w,A,B and U be as in Theorem 1 . 2 . 1 . 

(i) The set {(x, y, 2 3 , . . . , zn) G U\x = y — 0 } = V is containned in U. If 

the singular set S of w has no codimension 1 components, then V is 

a smooth codimension 2 piece of 5 and ( 0 , 0 ) is an isolated solution of 

A(x, y) = B ( x , y) = 0 . By taking a smaller U if necessary we can suppose 

that 5 fl U = V. 

(ii) The foliation induced by w = 0 in U is equivalent to the product of the 

singular foliation in U D { ¿ 3 = c 3 , . . . , zn = cn} C C2 x ( 0 3 , . . . , cn) given 

by Adx + Bdy = 0 (or by the differential equation x = —B,y = A), by 

the codimension 2 foliation in Î7 given by x = c i ,y = C2. The singular 

set in this case is V = = ?/ = 0 } . 

Let T = ( ( t / a ) a € A , H a )aeA, (9<*p)uanurf<i>) be a foliation on M . We define 

the Kupka set of JF by K(?) 
Aea 

i f a, where 

Ka = {p£ Ua\wa(p) = 0 and dwa(p) ^ 0} 
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Since wa = gapwp in Ua H Up ^ <̂>, we have dwa = dga/? Awp + gapdwp which 

implies that Ka fl Up = Kp C\Ua. It follows from (i) that K^T) is a smooth 

complex codimension 2 submanifold of M. In fact K(!F) = S(T) — W(^") 

where W(^*) 
a£A 

wa,wa = {Peua\wa(p 0 and dwa(p) = 0 } . Observe 

that WY.77) is an analytic subset of M. 

1.2.3 Definition: We say that K is a Kupka component of ^ if K is an 

irreducible component of 5 ( ^ ) and i f C K(T). Observe that a Kupka com­

ponent of T is in particular a smooth connected codimension 2 analytic subset 

of M. 

Let V be a connected codimension 2 submanifold of K{F). It follows from 

the local product structure (see 1.2.1 and 1.2.2) that there exists a covering 

(Bi)içi of V by open sets of M , a collection of submersions (if>i)i£i, &i —> 

C2, and a 1-form w = A(x, y)dx + B(x, y)dy defined in a neighborhood C of 

(0,0) G C2, such that: 

(a) ipi(Bi) C C for evere i G / . 

(b) (0,0) is the unique singularity of w in C and V n = ^ ( O j O ) , for 

every i G / . 

(c) F(Bi is represented by w* = i/>*(w). 

We will say that ,F has transversal type w or X along V, where X is the 

vector field —Bd/dx + Ad/dy. The linear transversal type of T along V is, by 

definition, the linear part of X at (0,0) in Jordan's canonical form, modulo 

multiplication by non-zero constants. Let L be the linear part of X at (0,0) 

in Jordan's canonical form. We have the following possibilities: 

(i) L is diagonal with eigenvalues Ai ^ A2. 

(ii) L is diagonal with eigenvalues Ai = A2 7̂  0. 

(iii) L is not diagonal with eigenvalues Ai = A2 ^ 0. 

Observe that, since §f (0,0) - §J(0,0) ^ 0, we have tr(L) ^ 0 and so the 

possibilities Ai = A2 = 0 or Ai = —A2 cannot occur. 

In case (i) the two eigendirections of L induce via the submersions two 
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line subbundles of the normal bundle v(V) of V in M. We will call these 

line bundles L\ (relative to Ai) and L2 (relative to A2). It is clear that 

v(V) = L\ © ¿2- In case (iii) L has just one eigendirection which induces in 

the same way a line subbundle L\ of v(V). In the case of Kupka components 

we have the following (see [G.M- L.N]): 

1.2.4 - T H E O R E M . Let dim(M) > 3 and K be a Kupka compact component 

of ?\ We have: 

(a) In case (i), if C(L{) is the first Chern class of L{, i = 1,2, considered in 

H*(K,C), then AiC(L2) = A2C(Li). 

(b) In case (iii) we have C{L\) = 0. 

(c) In case (i), if A2/Ai = p/q, where pyq G Z+ are relatively primes and 

C(L\) ^ 0, then X is linearizable. 

1.3 - Codimension 1 foliations of CPn, n > 3 : 

A holomorphic foliation in CPn can be given by an integrable 1-form w = 

n 

2=0 

(a) 

W{dzi (w A dw = 0), with the following properties: 

w0,...,wn are homogeneous polynomials of the same degree > 1 

(b) ÍR(W) 
n 

2=0 

WiZi 0 (R 
n 

¿=0 

Zid/ozi is the radial vector field). 

This form can be obtained as follows: let TT: Cn+1 - { 0 } -> CPn be the 

canonical projection and T = ( (J7a)a€A, K ) a € A , {9a(3)uar\u^<i>) be a folia­

tion in CPn. Let ^ * = ((C/2)o€A,(^i)o€A,(pS/j)a«n^«) be the foliation 

in Cn+1 - { 0 } defined by U* = T R " 1 ^ ) , < = 7r*(wa) and ^ = 5a/3 o TT. 

Since for 17* fl Up PI [7* ^ <f> we have g*^ • • #*a = 1, we can use Cartan's 

solution of the multiplicative Cousin's problem in Cn+1 - { 0 } (see [G-R]) to 

obtain an integrable 1-form rj in Cn+1 - { 0 } such that for any a G A, we have 

ri\U* = ha • w*, where /ia G (Ua) Prom Hartog's Theorem (see [G-R]), 

77 extends to a holomorphic 1-form ¡1 in Cn+1. If \i = + Mfc+i + • • • is the 
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