Astérisque

CH. BONATTI X. GÓMEZ-MONT The index of holomorphic vector fields on singular varieties I

Astérisque, tome 222 (1994), p. 9-35

<http://www.numdam.org/item?id=AST_1994_222_9_0>

© Société mathématique de France, 1994, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

The Index of Holomorphic Vector Fields on Singular Varieties I¹

Ch. Bonatti and X. Gómez-Mont

Given a complex analytic space V with an isolated singuarity at p, there is a way to associate to a holomorphic vector field X on V an index at p a la Poincaré-Hopf Ind(X, V, p) (see [Se],[GSV]). The objective of this series of papers is to understand this index. In the present paper we relate it to the V-multiplicity:

$$\mu_V(X,p) = \dim_{\mathbf{C}} \frac{\mathcal{O}_{\mathbf{C}^n,p}}{(f_1,\ldots,f_\ell,X^1,\ldots,X^n)}$$

where f_1, \ldots, f_ℓ are generators of the ideal defining $V \subset \mathbb{C}^n$, X^j are the coordinate functions of a holomorphic vector field that extends X to a neighbourhood of 0 in \mathbb{C}^n and the denominator denotes the ideal generated by the elements inside the parenthesis in the ring $\mathcal{O}_{\mathbb{C}^n,p}$ of germs of holomorphic functions at p. The main results are:

Theorem 2.2. Let $(V, 0) \subset \mathbf{B}_1 \subset (\mathbf{C}^n, 0)$ be an analytic space in the unit ball \mathbf{B}_1 which is smooth except for an isolated singularity at 0. Let Θ_r denote the Banach space of holomorphic vector fields on V_r with continuous extensions to ∂V_r , r < 1, with its natural structure as an analytic space of infinite dimension. Then:

a) The function V-multiplicity at 0

$$\mu_V(,,0):\Theta_r\to \mathbf{Z}^+\cup\{\infty\}$$

¹Research partially supported by CONACYT-CNRS and CONACYT-CNPq. The second author was a Guggenheim fellow during this research, and he would like to thank Bo Berndtson for useful conversations.

is upper semicontinuous and it is locally bounded at those points X where X has an isolated singularity on V at 0.

- b) The subsets of Θ_r defined by $\mu(0,) \ge K$ are analytic subspaces and the minimum value of $\mu_V(0,0)$ in Θ_r is attained on an open dense subset $\tilde{\Gamma}_1$ of Θ_r .
- c) The subset of Θ_r formed by vector fields whose critical set at 0 has positive dimension is an analytic subspace of Θ_r .

We introduce the Euler characteristic $\chi_V(X,0)$ of $X \in \Theta_r$ at 0 in (2.10) and show:

Theorem 2.5. For $X \in \Theta_r$ with an isolated singularity at 0, $s \ll r$ and $0 \ll \varepsilon$, we have:

For any family of vector fields {X_t}_{t∈T}, parametrized by a finite dimensional analytic space (T,0) → (Θ_r, X) such that the V- multiplicity at 0 of the general vector field X_t of the family is minimal μ_V, we have:

$$\chi_V(X,0) = \chi_0^{\text{tor}}(\mathcal{O}_{z_{T,s}}, \mathcal{O}_{\{X\}})$$

where the right and hand side is the Euler characteristic of higher torsion groups.

2) For $Z \in U(X, \varepsilon)$ we have

$$\chi_V(X,0) = \chi_V(Z,0) + \sum_{\substack{Z(p_j)=0\\p_j \in V_s - \{0\}}} \mu_V(Z,p_j)$$

3) For $X \in \Theta_r$ with an isolated critical point at 0, we have:

$$0 < \chi_V(X,0) \le \mu_V(X,0)$$

and $\chi_V(X,0) = \mu_V(X,0)$ if and only if the universal critical set Z_r is π_1 -anaflat at (X,0) (in particular this happens in $\tilde{\Gamma}_1$).

Let $X \in \Theta_r$, we say that the *critical set of* X *does not bifurcate* if there is $\varepsilon > 0$ and s > 0 such that for $Y \in U(X, \varepsilon) \subset \Theta_r$ we have that the only critical point of Y on V_s is 0, (that is, X has an isolated singularity at 0 as well as any sufficiently near vector field in Θ_r and there is no other critical point uniformly in a neighbourhood V_s of 0).

Theorem 2.6. Let $(V,0) \subset \mathbf{B}_1 \subset (\mathbf{C}^n,0)$ be an analytic space which is smooth except for an isolated singularity at 0, then the set of points in Θ_r whose critical set does not bifurcate contains the connected dense open subset $\tilde{\Gamma}_1 \subset \Theta_r$ consisting of vector fields with minimum V-multiplicity.

Theorem 3.1. Let $(V,0) \subseteq \mathbf{B}_1 \subset (\mathbf{C}^n,0)$ be an analytic space which is smooth except for an isolated singularity at 0, then there is an integer K such that

$$Ind_W(X, V, 0) = \chi_V(X, 0) + K$$

for X in the dense open set Θ' of vector fields in Θ_r with an isolated singularity at 0. For X in the dense open set of Θ' where the universal critical set \mathcal{Z}_r is Θ_r -anaflat we have

$$Ind_W(X, V, 0) = \mu_V(X, 0) + K$$

Corollary 3.2. Let $(V,0) \subseteq \mathbf{B}_1 \subset (\mathbf{C}^n,0)$ be an analytic space which is smooth except for an isolated singularity at 0, then there is a constant L such that $\operatorname{Ind}_W(X,V,0) \geq L$ for every germ of holomorphic vector field X on V with an isolated singularity at 0 on V.

In the first section we analyse the index on smooth compact manifolds with boundary. We prove:

Proposition 1.1. Let X and Y be C^1 -vector fields defined on the compact manifold with boundary $(W, \partial W)$ and non-vanishing on ∂W and let $[\Gamma_X]$ denote the fundamental class of the graph of X/||X|| on the sphere bundle **S** of unit tangent vectors of W restricted to ∂W (with respect to some Riemannian metric on W). Then

$$Ind(X, \partial W, W) - Ind(Y, \partial W, W) = [\Gamma_X] \cdot [\Gamma_{-Y}]$$

where we do the intersection in homology of S.

In the second section we develop the properties of the V-multiplicity, and in the third we compare the V-multiplicity with the topological index.

1. The index of vector fields on manifolds with boundary

Let W be a compact oriented manifold of dimension m with boundary, ∂W , oriented in the natural way. Given a never vanishing C^0 -vector field X in a neighbourhood of ∂W , the *index of* X *on the boundary of* W, $\mathrm{Ind}(X, \partial W, W)$ may be defined by extending X to a vector field \tilde{X} on W with isolated singularities, and then adding up the indices at the singularities of \tilde{X} . The index is independent of the chosen extension \tilde{X} (see [Mi],[Se]).

To understand the dependence of the index on the manifold W, we will prove that the difference of the indices of 2 vector fields may be computed exclusively in terms of boundary data:

Proposition 1.1. Let X and Y be C^1 -vector fields defined on the compact manifold with boundary $(W, \partial W)$ and non-vanishing on ∂W and let $[\Gamma_X]$ denote the fundamental class of the graph of X/||X|| on the sphere bundle **S** of unit tangent vectors of W restricted to ∂W (with respect to some Riemannian metric on W). Then

$$Ind(X, \partial W, W) - Ind(Y, \partial W, W) = [\Gamma_X] \cdot [\Gamma_{-Y}]$$

where we do the intersection in homology of S.

Proof. Since the index and the fundamental classes do not change if we make a small perturbation, we will assume that X and Y are in general position. Namely we will assume that if the zeroes $\mathcal{Z} \subset \mathbf{C} \times W$ of the vector fields $\{X_t = (1-t)X + tY\}_{t \in [0,1]}$ intersect ∂W , say at 0_t , then at 0_t : X_t has a zero