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STABLE TOPOLOGICAL CYCLIC HOMOLOGY IS 
TOPOLOGICAL HOCHSCHILD HOMOLOGY 

By LARS HESSELHOLT 

1 . INTRODUCTION 

1.1. Topological cyclic homology is the codomain of the cyclotomic trace from 
algebraic i^-theory 

trc: K(L) -> TC(L) . 
It was defined in [2] but for our purpose the exposition in [6] is more convenient. 
The cyclotomic trace is conjectured to induce a homotopy equivalence after p-
completion for a certain class of rings including the rings of algebraic integers 
in local fields of possitive residue characteristic p. We refer to [11] for a detailed 
discussion of conjectures and results in this direction. 

Recently B.Dundas and R.McCarthy have proven tha t the stabilization of 
algebraic i^-theory is naturally equivalent to topological Hochschild homology, 

KS(R;M) ~ T(R\ M) 

for any simplicial ring R and any simplicial i?-module M, cf. [4]. We note 
tha t bo th functors are defined for pairs (L; P) where L is a functor with smash 
product and P is an L-bimodule; cf. [12]. An outline of a proof in this set­
ting and by quite different methods, has been given by R.Schwanzl, R.Staffelt 
and F.Waldhausen. Hence the following result is a necessary condition for the 
conjecture mentioned above to hold. 
Theorem. Let L be a functor with smash product and P an L-bimodule. Then 
there is a natural weak equivalence, TCS(L; P) ~ T(L; P) . 

It is not surprising tha t we have to p-complete in the case of T C since the 
cyclotomic t race is really an invariant of the p-completion of algebraic /^-theory, 
cf 1.4 below. The rest of this paragraph recalls cyclotomic spectra, topological 
Hochschild homology, topological cyclic homology and stabilization. In para­
graph 2 we decompose topological Hochschild homology of a split extension of 
FSP ' s and approximate T C in a stable range. Finally in paragraph 3 we study 
free cyclic objects and use them to prove the theorem. 

Throughout G denotes the circle group, equivalence means weak homotopy 
equivalence and a G-equivalence is a G-map which induces an equivalence of 
if-fixed sets for any closed subgroup H < G. 
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1.2. Let L be an FSP and let P be an L-bimodule. Then T H H ( £ ; P ) . is the 
simplicial space with fc-simplices 

hol imF(S*° A . . . A Sik, P(S*°) A L(Six) A . . . A L(Sik)) 
Ik+1 

and Hochschild-type s t ructure maps, cf. [12], and THH(L; P) is its realization. 
When P = £ , considered as an L-bimodule in the obvious way, THH(L; L) 
is a cyclic space so THH(L; L) has a G-action. In bo th cases we use a thick 
realization to ensure tha t we get the right homotopy type, cf. the appendix. 
More generally if X is some space we let THH(L; P ; X ) . be the simplicial space 

hol imP(S*° A . . . A Sik, P(Sio) A L^S*1) A . . . A L(Sik) A X). 
Ik+1 

where X acts as a dummy for the simplicial s t ructure maps. If X has a G-action 
then THH(L; P ; X) becomes a G-space and T H H ( £ ; L; X) a G x G-space. We 
shall view the lat ter as a G-space via the diagonal map A: G —> G x G and then 
denote it THH(L; X). 

We define a G-prespectrum P ) in the sense of [9] whose O'th space is 
T H H ( L ; P ) . Let V be any orthogonal G-representation, or more precisely, any 
f.d. sub inner product space of a fixed 'complete G-universe' U. Then 

t ( L ; P ) ( 7 ) = T H H ( L ; P ; Sv), 

with the obvious G-maps 

a: SW~V A *(£; P)(V) — t(L; P)(W) 

as prespect rum st ructure maps. Here Sv is the one-point compactification of 
V and W — V is the orthogonal complement of V in W. We also define a 
G-spectrum T(L;P) associated with t ( L ; P ) , i.e. a G-prespectrum where the 
adjoints a of the s t ructure maps are homeomorphisms. We first replace t(L; P) 
by a thickened version tT(L; P) where the s t ructure maps a are closed inclusions. 
It has as T^'th space the homotopy colimit over suspensions of the s t ructure maps 

tT(L:P)(V) = holimi:v-zt(L:P)(Z) 
ZdV 
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and as s t ructure maps the compositions ( t= t (L;P) ) 

£ ^ - v holim £ v - z * ( Z ) ~ holim E w " z t ( Z ) -> holim E ^ " z t ( Z ) 
ZrV z<zv Z(ZW 

Here the last map is induced by the inclusion of a subcategory and as such is 
a closed cofibration, in particular it is a closed inclusion. Furthermore since V 
is terminal among Z C V there is natural map 7r:tT (L; P) —> t(L\P) which is 
spacewise a G-homotopy equivalence. Next we define T(L; P) by 

T(L;P)(V)= lim Qw-ytT(L;P)(W 

WcU 

with the obvious s t ructure maps. 
We can replace THH(L; P; Sv) by THH(L; Sv) above and get a G-prespec-

t r u m t(L) and a G-spectrum T(L). These possess some extra s t ructure which 
allows the definition of TC(L) and we will now discuss this in some detail. For 
a complete account we refer to [6], see also [3]. 

1.3. Let G be a finite subgroup of G of order r and let J be the quotient. 
The r ' t h root pc'-G —» J is an isomorphism of groups and allows us to view 
a J-space X as a G-space p^X. Recall tha t the free loop space CX has the 
special proper ty tha t pc£Xc =Q CX for any finite subgroup of G. Cyclotomic 
spectra, as defined in [3] and [6], is a class of G-spectra which have the analogous 
property in the world of spectra. This section recalls the defintion. 

For a G-spectrum T there are two J-spectra Tc and <&CT each of which could 
be called the G-fixed spectrum of T. If V C Uc is a G-trivial representation, 
then 

TC(V) = T(V)C, ®CT{V) = lim Qw ~VT{W)C 

W(ZU 
and the s t ructure maps are évident. There is a natural map r ^ : Tc — » o f 
J-spectra; rc(V) is the composition 

T°(V) ^ lim F(SW-V,T(W))° lim F(SW°~v,T(W)C) = ®CT(V 
WCU wcu 

where the map ¿* is induced by the inclusion of G-fixed points. The difference 
between Tc and 3>CT is well illustated by the following example. 

Example. Consider the case of a suspension G-spectrum T — E ^ X , 

T(V)= lim nw-y(Sw AX). 
wcu 

We let EQH denote a universal H-free G-space, tha t is EQHK ~ * when H Pi 
K = 1 and EQHK = 0 when H D K ^ 1. Then on the one hand we have the 
torn Dieck splitt ing 

T(EG/H(C 
H<C 

T(EG/H(C/H)+ AC/H XH), 
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and on the other hand the lemma shows tha t ^c (T,^ X) ~j . Moreover 
the na tura l map rc' (T,??X)C —• <f>°(T,??X) is the projection onto the summand 
H = C. 

A J-spec t rum D defines a G-spectrum p*cD. However this G-spectrum is 
indexed on the G-universe p^jUc ra ther than on U. To get a G-spectrum in­
dexed on U we must choose an isometric isomorphism fc'-U PQUC', then 
(pcD)(fc{V)) is the V'th space of the required G-spectrum, which we denote 
it p%D. 

We want the fc s to be compatible for any pair of finite subgroups, t ha t is 
the following diagram should commute 

U P*c 
phrsu°rs 

P*c 

P*cr(f P*cr(fcs)Cr PcMcUc°)°r. 

Moreover the restriction of fc to the G-trivial universe UG induces an automor­
phism of UG which we request be the identity. We fix our universe, 

V 
фСг°т 

фСг°т 

where C(n) = C but with G acting through the n ' t h power map. The index cx 
is a dummy. Since p^C(n) = C(nr ) , where r is the order of G, we obtain the 
required maps fc by identifying Z = rZ . 

Definition. ([6]) A cyclotomic spectrum is a G-spectrum indexed on U together 
with a G-equivalence 

tpc:p£®CT-*T 

for everv finite C c G , such tha t for anv pair of finite subgroups the diagram 

pf $crpt $C*T РсгзфСг°т 

Р%Ф°г<Рса у с r s 

ptr®CrT <PCr T 

commutes. 
We prove in [6] tha t the topological Hochschild spectrum T(L) defined above 

is a cyclotomic spectrum. The rest of this section recalls the definition of the 
</?-maps for T(L). The definition goes back to [2] and begins with the concept 
of edgewise subdivision. 
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