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Algebraic K-Theory of operator ideals 

(after Mariusz Wodzicki) 

by 

Dale HUSEMÖLLER 

Haverford College 
Haverford, Pa 19041 

e-mail : DHusemol@acc.Haverford.edu 

This is a report on some of Wodzicki's results on the algebraic iiT-theory of 
ideals in the ring of bounded operators on a Hilbert space. Unless indicated 
otherwise an ideal is always a two-sided ideal. We use the following notations. 
Let H denote a countably infinite-dimensional Hilbert space, and let B(H) 
denote the algebra of bounded operators on H. It is known that the ordered 
set of proper ideals in B(H) has a maximal element, namely fC = JC(H) of 
compact operators on H, and a minimal element, namely T = T{H} of finite 
rank operators on H. These assertions are proved in Calkin [ 1941] . 

In Suslin-Wodzicki [1990] we find an isomorphism 

KJB ® K) —• Klop(B ® K) Klop(B) 

for every C*-algebra B where <g) denotes a C*-completion of the algebraic 
tensor product. In LN 725, Karoubi conjectured that 

K^Bè^fC) —• Kl^iBènfC) 

is an isomorphism where B is any Banach algebra with unit and (g)̂  is Gro-
thendieck's projective tensor product. The tensor product B^wfC is not a 
C*-algebra here even if B is a C*-algebra. The C*-analogue of Karoubi's 
conjecture, that has been circulated among people working on C*-algebras 
under the name of the Karoubi's conjecture, was proved in Suslin-Wodzicki 
[1990] . The original Karoubi conjecture has been proved by Wodzicki [un
published]. When we put B equal to the complex numbers C, we have the 
isomorphism 

jrm(ic) — /CP(C) = Z for even m 
0 for odd m. 

s. M. F. 
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The comparison map iiTm(/C) • K^P(C) factors through 

KM(B(H),lC) ^ K%P(C) 

where the relative iïT-groups K{(B(H), JC) for i > 0 are defined in the first 
section. Suslin and Wodzicki prove that the excision morphism K*(/C) • 
K*(B(H), JC) is an isomorphism. In particular, they get the index isomorphism 

Ind : K2i(B(H\K) • Z and K2i-i{B(H),K) = Q 

for all i. The isomorphism Ind is the classical index coming from the index of 
Fredholm operators. 

In recent work M. Wodzicki studies other (two-sided) ideals J C 13(H) and 
their algebraic /^-theory K*(B(H), J) . He introduces a class of ideals J in 
B(H) which, for the purpose of this paper, we call S-ideals, and he proves the 
following theorem which analyses index homomorphisms with values in cyclic 
homology for U-ideals. 

(2.8) Main exact index sequence. There is an exact sequence functorial 
under inclusion J C J1 for J5-ideals of the form 

0 HC2j^{B{H),J) K2j(B(H),J) 

z 

HC2j-2(B(H),J) K2j-i{B(H), J) 0. 

Every Schatten ideal Cp is a 5-ideal. For the definition of S-ideal, see (2.6). 
In order to describe which ideals J C B(H) axe S-ideals, we recall the 

definition of the power Jr of J to a strictly positive real number r which 
generalizes the positive integer power Jn of J. The real power Jr of J is the 
ideal generated by all \A\r for any A G J where \A\ = (AA*)1/2. Observe that 
if r 5: R'\ then we have the inclusion Jr D Jr . We denote by Joo = U r > o r̂•> 
and one sees that is an ideal which contains J. We call the ideal Joo 
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the root completion of J. A S-ideal J will be defined in terms of JQQ having 
certain properties. For this, see definition ( 2 . 6 ) and for the derivation of the 
five term sequence, see ( 2 . 7 ) . 

This text is part of a lecture given at the Strasbourg iiT-theory Conference, 
1992 . The author profitted from many discussions with Mariusz Wodzicki 
while we were both guests of the Forschergruppe, Topology and Noncommu-
tative geometry, Heidelberg, May and June 1 9 9 2 and during the preparation 
period of this text. 

§1. Definition of relative K* and HC* groups 

In this section we review the definition of the relative K* and cyclic 
homology groups in order to fix notations and fist the exact triangles that 
we will be using. 

( 1 . 1 ) Definition. Let R be a Z-algebra (with 1 ) . The algebraic iiT-groups axe 
Ki(R) = 7Ti(BGL(R)+), i > 1. Let / be an ideal in i?, let R-+R/I denote the 
quotient morphism, and let -F(i?, / ) denote the homotopy fibre of the induced 
mapping on the plus constructions 

BGL(R)+ —• BGL(R/I)+ 

where GL(R/I) = im(GL(R) -> GL(R/I)). The relative if-groups of the pair 
(R,I) are the homotopy groups Ki(R.I) = nAFiR* I)), i > 1. 

( 1 . 2 ) Definition. We can extend the iiT-groups to negative degrees with the 
following recursive formulas 

K-i(R) = coker K1.i(R[t])®K1^i(R[t-1])^K1^i(R[tJ^ 

and 

K-i(I) = ker(ür-f-(ZK/)^ü:_Ä-(Z)) for * > 0. 

The relative Ki(R,I) for i < 0 are defined either by the double ring 
construction as in Milnor's book or by the suspension functor as in Bass's 
book. 

( 1 . 3 ) Remark. From the fibre space exact triangle of homotopy groups we 
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have the following exact triangle of i^-groups 

KJR,I) KJR) 

- i 

K*(R/I) 

K+(ZKI,I) = K.(I). 

The last terms of the exact sequence resulting from the fibre space homotopy 
sequence are the following 

K1(R)^K1(R/I) = 7Ti(BGL(R/ im^iOR) KX(R/I)) 0. 

The negative degree terms are exact from the nature of the definition of the 
relative K-groups in negative degrees. 

The vertical morphism in this diagram leads to the following definition. 

(1.4) Definition. An ideal / satisfies iT*-excision provided the above vertical 
arrow K*(I) —• K*(R, / ) is an isomorphism for all rings R containing / up to 
isomorphism. 

We know that Ki(I) —» Ki(R, I) is always an isomorphism for i < 0. 

(1.5) Remark. Let / be an ideal satisfying iT*-excision. Then we have the 
following Z-graded exact triangle 

K*(I) <* K*(R,I) K*(R) 

-l 

KJR/I). 

Now we consider the relative cyclic homology groups. Here we use the 
conventions of Wodzicki compatible with the usual conventions in K-theory, 
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