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DIVISIBILITY IN THE CHOW GROUP OF ZERO-CYCLES 
ON A SINGULAR SURFACE 

by 

Claudio P E D R I N I 1 and Charles W E I B E L 2 

§0. Introduction. 

In this paper we study the divisibility of the Chow group CH2(X) of Ci-
cycles on a surface X over a field k. When X is smooth this question has 
been studied by several authors [MSw] [B2] [R] [CT-R], and we extend many 
of their resuit s to singular surfaces. 

The Chow group of a singular surface X is defined as follows. Choose a 
closed Y C X containing the singular locus of X but no irreducible component 
of X , and let Z2{X, Y) be the free abelian group on the set of codimension 2 
points of X — Y. For each closed curve T in X missing Y, and every rational 
function / on T, the divisor (/) should equal 0 in CH2(X). If dimY = 0, 
CH2(X) = CH2(X,Y) is the quotient of Z2{X,Y) by the subgroup spanned 
by thèse divisors ; it is independent of Y because by [PW1, 2.2] it is isomorphic 
to SKo(X), the subgroup of Ko(X) consisting of éléments of rank 0 and 
déterminant 1. If dimY = 1 we form CH2(X) = CH2(X,Y) by adding the 
extra relations that ( /) = 0 for every closed curve T on X which is locally 
eut out by a nonzerodivisor and every / G k{T) such that the support of (/) 
misses T ( 1 7 ; this group is also independent of Y, because by [LW] we have 
CH2(X,Y) = SK0(X). 

If X is a surface and /C2 dénotes the Zariski sheaf associated to the presheaf 
U t-+ K2(U), there is a well known isomorphism, called "Bloch's Formula" : 

(0.1) CH2(X) 9Ê SK0(X) Ç* H2ai(X,/C2). 
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It was discovered by Bloch [Bl] for smooth quasiprojective surfaces, extended 
to ail smooth varieties by Quillen [Q], and to singular surfaces by Levine 
[Ll] ; see also [PW1, 8.9]. For regular surfaces, (0.1) also follows from the 
Brown-Gersten spectral séquence [BG]. For gênerai 2-dimensional noetherian 
schemes, (0.1) follows from Thomason's generalization [TT, 10.3] of the 
Brown-Gersten spectral séquence. 

Our results relate CH2(X) to the Zariski cohomology of a certain sheaf 
7ï2 on X. To define it, fix an integer n such that ^ G ky let jjbn dénote 
the étale sheaf of nth roots of unity, and set //®2 = /in <g) By définition, 
H2 = H2(n®2) is the Zariski sheaf associâted to the presheaf U i-> H2t (17, fJ,®2) 
of étale cohomology. Since this sheaf has exponent n, it is convenient to adopt 
the notation that G/n dénotes G/nG and nG dénotes {x G G : nx = 0} for 
any abelian group or sheaf G. Here is our first resuit. 

THEOREM A . — Let X be a quasiprojective surface over a field k con-
taining Then the Chern class c2,2 : K2{U) —> H2t(U, JJ,®2) induces an 
isomorphism : 

CH2(X)/n ~ #z2ar(X,/C2)/n - H?ar(X,H2(»®2)) 

This resuit was originally proven in the smooth case by Bloch and Ogus 
[BO], and generalized to the case of isolated singularities by Barbieri-Viale 
[BV1, 3.9]. We give a short proof of Theorem A in §1, using the Nisnevich 
topology on X, a method suggested to us by R. Thomason. 

After submitting this paper, which contained a second more technical proof 
of Theorem A in §2, we became aware of the following unpublished resuit of 
Ray Hoobler [Hoob] which, given Bloch's formula (0.1), immediately implies 
Theorem A. 

HOOBLER'S THEOREM 0.2. — Let k be a field containing ^. 
1) If A is a semilocal ring, essentially offinite type over k, then the Chern 

class C22 : K2{A) —± H2t(A, fi®2) is an isomorphism. 
2) If X is a quasiprojective scheme over k, there is an isomorphism of 

(Zariski) sheaves 
c2>2 : /C2/n^t t2( / i®2) . 

When X or A is smooth over fc, this theorem is implicit in Merkurjev and 
Suslin's work [MS, §18] ; see [B3, 3.3] [CT-R, p.168] and [PW2, 4.3]. When X 
is a singular curve, this theorem was proven in [PW2, 5.2]. 

Our original proof of Theorem A is therefore obsolète. As a favor to the 
reader, we have deleted it. It was the original §2 of this paper. 

The current §2 gives a short survey of the étale Chern classes Cij. We 
also prove that the isomorphism in Theorem A lifts Grothendieck's Chern 
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class c2,4 : Ko(X) —• H^t(X^ //®2) to SK0(X) in the sensé that c2,4 is the 
composite 

SK0(X)^SK0(X)/n ~ Hssss2at(X,H2) H^t(X,^2), 

7 being the edge map in the Leray spectral séquence for Xet —• XZSLT. When X 
is smooth this proves that the "cycle map" considered in [CT-R] and [Sai,§5] 
is just C2,4-

In § 3 we consider the normalization TT : X • X of X. Using Mayer-
Vietoris séquences, we relate CH2(X)/n to the Chow group CH2(X)/n. Let 
Y dénote the singular locus of X, and set Y = 7r_1(l^), so that we have a 
cartesian square : 

Y 
3 

X 

Y 
i 

7T 

X. 

THEOREM B . — Assume that k contains (in and ^. Then there is an exact 
séquence for the sheaf H2 = 7i2(/J,®2) : 

H1 (X, H2) 0 H1 (Y, H2) H1 (Y, H2) -> H2(X9 H2) H2(X, H2) -+ 0 . 

Using Theorem A and the two isomorphisms H1(Y^7ï2) = SKi(Y)/n and 
H1 (Y,H2) = SK1(Y)/n of [PW2, 5.1], we can restate Theorem B as follows. 

COROLLARY C . — With n as in Theorem B, there is an exact séquence : 

H^{Xs,U2) 0 SKs1(Y)/n SKsxty)/*. CH2(X)s/n CH2(sX)/n 0 

In the Appendix, we indicate how much of Corollary C can be obtained 
from pure K-theoretic techniques, i.e., without resorting to 7i2. 

In § 4 we relate the n-torsion in the Chow group of X to the term i / ^ X , 7i2) 
appearing in Corollary C, as well as to the quotient iï1(X,A^2) of SKi(X). 
When X is smooth, we know by [ B 3 , 1.12][MS, 8.7.8(e)] that there is an exact 
séquence : 

( 0 . 3 ) 0 — H1(X,K2)/n — H\X,n2(n®2)) — nCH2(X) — 0 . 
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When X is a surface with isolated singularities, (0.3) needs to be modified 
because the subsheaf nK2 of n-torsion éléments in KL2 has more complicated 
cohomology. Indeed, the vanishing of H2(X, n/C2) in the smooth case is the 
basis for the proof of (0.3) in [MS], but if X has isolated singularities we show 
in 4.2 that 

H2(X,n!C2) 9é H^X^H1^®2)). 

This group is just H2(X,Ox)/n when /jin C fc, and we know that it can 
be nonzero for normal surfaces; see [PW1, 5.9]. We are able to prove the 
following generalization of (0.3) in §4. (Again, we have deleted those parts 
which Hoobler's Theorem makes obsolète.) 

THEOREM D . — Let X be a quasiprojective surface over a field k containing 
^. Assume that X is normal, or more generally that Sing(X) is finite. Then 
there is an exact séquence : 

H°(X, K2/n) ^ H2(X, NK2) ^H^X, JC2)/n ̂ H\X, K2/n)-> nCH2(X)->0 

Remark. Presumably the map H°(X,H2) H2(X,1H}) in Theorem D is 
the differential in the Leray spectral séquence converging to H*t(X, ^n2)- ^ 
so, and we write NH3(X) for the kernel of H*t(X,n®2) H°{X,H3), then 
we may restate Theorem D as the following exact séquence, which generalizes 
part of the séquence of [Suslin, 4.4]. 

(0.4) 0 Hx{X,K2)ln -> NH3(X) -> nCH2(X) 0 

COROLLARY E (Collino [C]). — Suppose that k is either an algebraically 
closed field, or the reals M, or a local field. Let X be a surface having only 
isolated singularities. Then the n-torsion in CH2(X) is finite for every n with 
J e * . 

Proof Fix n and let k be any field such that H\t(k,M) is finite for 
constructible n-torsion sheaves M. Then each Hçt(X, /J,®*) is finite by [SGA4, 
XVI.5.1]. When X is a surface, the Leray spectral séquence Hp(X,?ïq) 
H2t{X^iJL®i) dégénérâtes enough to show that the group H1 (X,H2{JJL®2)) = 
H1(X,K,2/n) is finite. Now apply Theorem D. [] 

There is a "degree" map CH2(X) —• Z°, where c dénotes the number of 
irreducible proper components of X. The image A has finite index in Zc, and 
CH2(X) = A 0 A0(X), where Ao(X) is the group of zéro cycles of relative 
"degree" zéro. Therefore ail of our divisibility results are actually statements 
about the divisibility of the subgroup Ao(X) of CH2(X). 
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