Astérisque

FLORIN RĂDULESCU

A type III_{λ} factor with core isomorphic to the von Neumann algebra of a free group, tensor B(H)

Astérisque, tome 232 (1995), p. 203-209 <http://www.numdam.org/item?id=AST_1995_232_203_0>

© Société mathématique de France, 1995, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A TYPE III_{λ} FACTOR WITH CORE ISOMORPHIC TO THE VON NEUMANN ALGEBRA OF A FREE GROUP, TENSOR B(H).

FLORIN RĂDULESCU

In this paper we obtain a type III_{λ} factor by using the free product construction from [Vo1,Vo2] and show that its core ([Co]) is $\mathcal{L}(F_{\infty}) \otimes B(H)$. We will prove that

 $M_2(\mathbb{C}) * L^{\infty}([0,1],\nu)$

is a type III_{λ} factor if $M_2(\mathbb{C})$ is endowed with a nontracial state. Moreover we will show that the core ([Co]) of this type III_{λ} factor (when tensorized by B(H)) is $\mathcal{L}(F_{\infty}) \otimes B(H)$ and we will give an explicit model for the associated (trace scaling) action of \mathbb{Z} on the core (cf. [Co], [Ta]). Here B(H) is the space of all linear bounded operators on a separable, infinite dimensional Hilbert space H.

Recall from [Vo1], that a family $(A_i)_{i \in I}$ of subalgebras in a von Neumann algebra M with state ϕ , is free with respect to ϕ if $\phi(a_1a_2...a_k) = 0$ whenever

$$\phi(a_i) = 0, a_i \in A_{j_i}, i = 1, 2, \dots, k, j_1 \neq j_2, \dots, j_{k-1} \neq j_k.$$

Reciprocally given a family $(A_i, \phi_i), i \in I$ of von Neumann algebras with faithful normal states ϕ_i , one may construct (see[Vo1]) the (reduced) free product von Neumann algebra $*A_i$, which contains $A_i, i \in I$ and has a faithful normal state ϕ so that $\phi|_{A_i} = \phi_i$ and so that the algebras $(A_i)_{i \in I}$ are free with respect to ϕ .

The aim of this paper is to show the following result.

Theorem. Let $\mathcal{E} = M_2(\mathbb{C}) * L^{\infty}([0,1],\nu)$ be endowed with the free product state ϕ where $M_2(\mathbb{C})$ is endowed with the state ϕ_0 which is subject to the condition

$$\phi_0(e_{11})/\phi_0(e_{22}) = \lambda \in (0,1) \text{ and } \phi(e_{12}) = \phi(e_{21}) = 0,$$

while $L^{\infty}([0,1],\nu)$ has the state given by Lebesgue measure on [0,1]. With these hypothesis, $M_2(\mathbb{C}) * L^{\infty}([0,1],\nu)$ is a type III_{λ} factor and its core is isomorphic to $\mathcal{L}(F_{\infty}) \otimes B(H)$.

In the proof of the theorem we will also obtain a model for the core of $\mathcal{E} \otimes B(H)$ and for the corresponding (dual) action on the core, of the modular group of the weight $\phi \otimes tr$ (tr is the canonical semifinite trace on B(H)). This model will be a submodel of the one parameter action of $\mathbb{R}_+/\{0\}$ on $\mathcal{L}(F_\infty) \otimes B(H)$, that we have constructed in [Ra]. The model. Model for the core of $(M_2(\mathbb{C}) * L^{\infty}([0,1],\nu)) \otimes B(H)$ and of the corresponding dual action on the core for the modular group of automorphism for the weight $\phi \otimes tr$:

Let \mathcal{A}_0 be the subalgebra in the algebraic free product

$$L^{\infty}(\mathbb{R}) * (\mathbb{C}[X] * \mathbb{C}[Y])$$

generated by $\{pXp, pYp, p | p \text{ finite projection in } L^{\infty}(\mathbb{R})\}$ where $L^{\infty}(\mathbb{R})$ is endowed with the Lebesgue measure.

Let τ be the unique trace on \mathcal{A}_0 defined by the requirement that the restriction τ_p to the algebra generated in $p\mathcal{A}p$ by $pXp, pYp, pL^{\infty}(\mathbb{R})$ is subject to the following conditions:

(i) The three algebras generated respectively by pXp, pYp, $pL^{\infty}(\mathbb{R})$ are free with respect to τ_p

(ii) $\tau(p)^{-1/2}pXp, \tau(p)^{-1/2}pYp$ are semicircular (with respect τ_p)(see [Vo1] for the definition of a semicircular element).

Such a construction is possible because of the Theorem 1 in [Ra].

Assume that pXp, pYp are selfadjoint and let \mathcal{A} be the weak completion of \mathcal{A}_0 in the G.N.S. representation for τ . Then (cf. [Ra]), \mathcal{A} is a type II_{∞} factor isomorphic to $\mathcal{L}(F_{\infty}) \otimes B(H)$ and the trace τ extends to a semifinite normal trace on \mathcal{A} (which we also denote by τ).

Recall (by [Ra]) that in this case, there exists a one parameter group of automorphism $(\alpha_t)_{t \in \mathbb{R}_+ \setminus \{0\}}$ on \mathcal{A} , scaling trace by t, for each $t \in \mathbb{R}_+ \setminus \{0\}$, which is induced by $d_t * M_t$ on $L^{\infty}(\mathbb{R}) * (\mathbb{C}[X] * [Y])$ where d_t is dilation by t on $L^{\infty}(\mathbb{R})$, while $M_t(X) = t^{-1/2}X; M_t(Y) = t^{-1/2}Y, t > 0.$

Let \mathcal{B} the von Neumann subalgebra of \mathcal{A} generated by

$$q_n = \chi_{[\lambda^{n-1}, \lambda^n]}, n \in \mathbb{Z},$$

the characteristic functions of the intervals $[\lambda^{n-1}, \lambda^n]$ and by the following subsets of \mathcal{A} :

$$\begin{split} X &= \{q_n X q_m | n, m \in \mathbb{Z}, |n-m| \leq 1\},\\ \tilde{Y} &= \{q_n Y q_n | n \in \mathbb{Z}\}. \end{split}$$

Clearly \mathcal{B} is invariant under $\{\alpha_{\lambda^n}\}_{n\in\mathbb{Z}}$ and by Lemma 3 in [Ra], \mathcal{B} is isomorphic to $\mathcal{L}(F_{\infty})\otimes B(H)$. Let $\beta_n = \alpha_{\lambda^n}|\mathcal{B}$.

Let $\mathcal{D} = \mathcal{B} \rtimes_{\beta} \mathbb{Z}$ be the cross product of \mathcal{B} by the action \mathbb{Z} given by β . Then by [Co], \mathcal{D} is a type III_{λ} factor. Let $u \in \mathcal{D}$ be the unitary implementing the cross product. Moreover let ψ be the normal semifinite faithful weight on \mathcal{D} obtained as the composition expectation from \mathcal{D} onto \mathcal{B} .

We will prove that \mathcal{B} , with the action of \mathbb{Z} given by $(\beta_n)_{n\in\mathbb{Z}}$ is isomorphic to the core of $\mathcal{E} \otimes B(H)$, with the dual action (on the core) for the modular group of automorphisms of the weight $\phi \otimes tr$ on $\mathcal{E} \otimes B(H)$. Our main result will be a consequence of the following proposition:

Proposition.

Let \mathcal{E} be the von Neumann algebra free product $M_2(\mathbb{C}) * L^{\infty}([0,1],\nu)$, with the free product state $\phi = \phi_0 * \nu$, where $M_2(\mathbb{C}) = (e_{ij})_{i,j=1}^2$ is endowed with the normalized state ϕ_0 with $\phi(e_{11})/\phi(e_{22}) = \lambda$ and $\phi(e_{12}) = \phi(e_{21}) = 0$. Then, with the above notation \mathcal{E} is isomorphic to $(q_o + q_1)\mathcal{D}(q_0 + q_1)$.

Moreover the state ϕ on \mathcal{E} is (via this identification) the (normalized) restriction of ψ to $(q_o + q_1)\mathcal{D}(q_0 + q_1)$.

(Here $\mathcal{D} = \mathcal{B} \rtimes_{\beta} \mathbb{Z}$, where \mathcal{B} is the von Neumann subalgebra in \mathcal{A} generated by $\tilde{X} = \{q_n X q_m | n, m \in \mathbb{Z}, |n - m| \leq 1\}, \tilde{Y} = \{q_n Y q_n | n \in \mathbb{Z}\}$ and the characteristic functions $q_n = \chi_{[\lambda^{n-1},\lambda^n]}, n \in \mathbb{Z}, q_n \in L^{\infty}(\mathbb{R}) \subseteq \mathcal{A}$. Moreover $\beta_n = \alpha_{\lambda^n}, n \in \mathbb{Z}$.)

Recall from above that the von Neumann algebra \mathcal{A} is a type II_{∞} factor isomorphic to $\mathcal{L}(F_{\infty}) \otimes B(H)$ and \mathcal{A} is generated by

 $\{pXp, pYp, p \mid p \text{ finite projection in } L^{\infty}(\mathbb{R})\}.$

Here $\alpha_t, t > 0$ acts as dilation by t on $L^{\infty}(\mathbb{R})$ and multiplies X, Y by $t^{-1/2}$. The trace on \mathcal{A} is subject to the above conditions (i), (ii) and it is scaled by the automorphisms $\alpha_t, t > 0$.

This proposition will be a consequence of the following two lemmas.

Lemma 1.

With $\mathcal{A}, \mathcal{B}, \mathcal{D}, \psi, \tau$ and u as before let

$$e_{11} = q_1 u = u q_0; e_{11} = q_0; e_{22} = q_1$$

Let a = x + y, where

$$x = (q_0 + q_1)X(q_0 + q_1) - q_0Xq_0$$
$$y = q_0Yq_0.$$

Then $M_2(\mathbb{C}) = (e_{ij})_{i,j=1}^2$ is free with respect to

 $\psi_1 = (\psi(q_0 + q_1))^{-1} \psi|_{(q_o + q_1)\mathcal{D}(q_0 + q_1)},$

to the semicircular element a, in the algebra $(q_0 + q_1)\mathcal{D}(q_0 + q_1)$ with unit $q_0 + q_1$.

Proof. We have to check freeness, which means that the value of ψ_1 on certain monomials in a, u, e_{11}, e_{22} is null. Since by definition, ψ_1 vanishes the monomials containing a different number of u's and u^* 's, we have only to check this if the number of occurrences for u is equal to the one for u^* .

Let $p_n = q_n + q_{n+1} = \chi_{[\lambda^{n-1}, \lambda^{n+1}]}$.

Using the fact that u implements β_1 on \mathcal{D} it follows that we only have to check $\psi_1(m) = 0$ if

$$m = p_0 f_1 q_{i_1} f_2 q_{i_2} f_3 \dots q_{i_n} f_{n+1} p_0$$

where the following conditions are fulfilled:

- (a) i_{j+1} is either i_j or $i_j \pm 1$.
- (b) Card $\{s | i_j = s, j = 1, 2, ..., n\}$ is even for every s.
- (c) f_k is a product

$$f_1^k a_1^k \dots f_{n_k-1}^k a_{n_k-1}^k f_{n_k}^k, \ n_k \ge 1$$

where f_s^k , $s = 1, 2, 3...n_k$, is an element of null value under the state ψ_1 in the algebra generated by $\alpha_j(a)$ while a_s^k is an element of null trace in the algebra generated by q_j, q_{j+1} . Here j is an integer which is completely determined, for each k. If $i_k \neq i_{k+1}$ then j is the minimum of the i_k and i_{k+1} . If $i_k = i_{k+1}$ then j is either i_k if $i_{k-1} \leq i_k$ or either $i_k - 1$ if $i_{k-1} > i_k$.

To see that those are all the monomials of null state that may appear in the algebra generated by $M_2(\mathbb{C})$ and a it is sufficient to note that any string

$$f_1e_{21}f_2e_{21}...f_pe_{21}f_{p+1}e_{12}f_{p+2}e_{12}...e_{12}f_{2p+1} =$$

= $f_1(q_1u)f_2q_1u...f_pq_1uf_{p+1}(u^*q_1)...(u^*q_1)f_{2p+1},$

after cancelation, is equal to

$$\begin{split} f_1(q_1u)f_2...q_1uf_pq_1\beta_1(f_{p+1})q_1f_{p+2}(u^*q_1)...(u^*q_1)f_{2p+1} &= \\ &= f_1(q_1u)f_2...q_1\beta_1(f_p)q_2\beta_2(f_{p+1})q_2\alpha_1(f_{p+2})q_1...(u^*q_1)f_{2p+1} = \\ &= f_1q_1\alpha_1(f_2)q_2...\beta_{p-1}(f_p)q_p\beta_p(f_{p+1})q_p\beta_{p-1}(f_{p+2})...q_1f_{2p+1} \end{split}$$

and similarly for a string in which each q_1u is replaced by u^*q_1 and conversely.

Here the f_i 's are products of the form $f_1^i a_1^i f_2^i a_2^i \dots f_n^i$ where f_j^i are elements of null trace in the algebra generated by $a = (q_0 + q_1)a(q_0 + q_1)$, while a_j^i are elements of null trace in the algebra generated by q_0, q_1 .