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Hypergroup structures associated with Gel'fand 
pairs of compact quantum groups 

Leonid Vainerman 

1 Introduction 

A notion of a GePfand pair for compact quantum groups introduced by T.H. Koorn-
winder in [19] is a generalization of the classical one for a locally compact group G 
and its compact subgroup K such that for any irreducible unitary representation of 
G, the dimension of the space of K-bi-invariant matrix elements is not greater then 1; 
this is equivalent to the commutativity of the subalgebra of group algebra of G, formed 
by if-bi-invariant functions (see [11]). This classical notion of a Gel'fand pair can be 
formulated as the cocommutativity of the coproduct 

A(/)(*,fc) := K 
f(gkh)dfiK(k) (fiK — Haar measure for K) (1) 

on the space of all /f-bi-invariant functions on G. Considering such functions as func
tions on the set of double cosets Q = K\G/K, one can rewrite (1) in the following 
form: 

A( / ) (p , r ) = 
Q 

K(p,r,s)f(s)dfiQ(s) ( p , r € Q ) , (2) 

where . , . ) is some positive kernel, \LQ is some positive Borel measure on Q (which 
can depend on p and r in general case). A function Xa(-) o n Q {a is classifying pa
rameter) is called a character of the coalgebra given by (2) if it satisfies a product 
formula* 

Q 
K(p,r,s)xa(s)dpQ(s) = Xa(p)Xa(r) ( p , T G Q). (3) 

We will say that the coproduct (2) defines a hypergroup structure on the algebra of K-
bi-invariant functions on G with the pointwise multiplication. One can find a discussion 
of hypergroups in [5],[6],[13],[22],[26] and in references given there. In many cases the 
Xa are well known special functions. Very often we have a similar formula with respect 
to a - dual product formula. It shows that Xa is also a character of a dual hypergroup 
by the variable a. 

In this paper we consider double cosets of compact quantum group with respect to 
its subgroup and distinguish cases of a Gel'fand pair and a strict Gel'fand pair. We show 
that every strict Gel'fand pair of compact quantum groups generates a normal com
mutative hypercomplex system with compact basis [5],[6] and a commutative discrete 
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hypergroup [13], which are in duality to one another, consider corresponding examples 

and describe characters of hypergroups in terms of q-orthogonal polynomials. 

After this paper had gone to press, the essential development of the subject took 

place. On the one hand, Gel'fand pairs for non compact quantum groups were con

sidered (see, for example, [29]). On the other hand, one can consider a notion of a 

quantum subgroup of a quantum group from more general point of view then in this 

paper, using a notion of a coideal (see, for example, [9],[12],[14],[15],[20], [21],[23],[28]). 

This permits to apply the Gel'fand pair approach to exceptionally interesting classes 

of q-special functions such as Macdonalds and Askey-Wilson polynomials and Jacksons 

q-Bessel functions. This development is described in the survey [28]. 

I would like to express my gratitude to Yu.A. Chapovsky, T.H. Koornwinder and 

A.U. Klimyk for many useful discussions. 

2 Double cosets of quantum groups 

2.1. Let H : = ( # , d , 1, A , £ , S ) , H := (H,d,î,Â,e,S) be two Hopf algebras over C [ l j , 

with multiplications d, d, units 1,1, comultiplications A , A , counits £,£, antipodes 5, S 

Definition 1 We say that H , H are in duality, if there exists a doubly non-degenerate 

pairing (•,•): H x H —• C such that: 

( l , 0 = ê ( C ) , (a6,C) = ( a ® 6 , Â ( C ) ) , ( A ( a ) , C ® V > = (a,Ci?), 

( a , Î ) = e ( « ) , ( 5 ( a ) , < ) = (a ,5 (C) ) ( V a , b € H , Ç , r , € H ) . 

We can define elements £ * a : = (id ® ( ) o A ( a ) , a *£:=(( ® id) o A ( a ) , where the 

pairing is used in the first, respectively second part of the tensor product. It is possible 

to rewrite the last equalities as ((*a,r}^j= (a,r/£), ( a* ( , 7 7 ) = ( ^ C 7 ? ) - These operations 

yield left and right algebra actions of H on H: 

(C7?) * a = c * d * °0Ì a * (C7/) = ( a * c) * v (Va
 £ H, 77, e E H). 

Now let H , H be two Hopf algebras in duality, ( £ H. In.what follows we will suppose 

that another pair ( H i , H i ) of Hopf algebras in duality exists together with an epimor-

phism 7r : H —• H i and embedding i : H i —> H such that ( 7 r ( a ) , ( ) = (a, i(Q) (Va £ 

H, ( £ Hi). Left and right coactions A1 : = (TT ® id) o A , A r := (id ® TT) O A of H i on H 

define the subsets of left-, right- and bi-ivariant elements: Hi\H := {h £ H\Al(h) = 

l i ® fc}, # / # i : = {fc e H\Ar(h) = h® l i } , Hi\H/Hi := H^HHH/H^ All these sets 

are evidently unital algebras. Let an invariant integral i/i (such that ^ i ( l ) = 1) on Hopf 

algebra H i [1] exist (it always exists when Hi is a compact quantum group in the sense 

of [34]). Then we can introduce two projections wl := (z/i07r®zcZ)oA, 7 r r := ( id®i/i07r)oA 

from H to Hi\H and H/Hi correspondingly. They commute and 7 r r on1 is a projection 

from H to Hi\H/Hi (see [7],[19]). A new coproduct may be introduced on Hi\H/Hi'. 

A : = (id ® i/i o 7T ® id) o (id ® A ) o A (4) 

This definition is a generalization of (1) for Hopf algebra case. 

232 



HYPERGROUP STRUCTURES ASSOCIATED WITH GEI'FAND PAIRS 

Theorem 1 Let a mapping À be defined by (4). Then: 

(a) A maps # i \ # / # i into # i \ # / # i ® H^H/H^ 

(b) A ¿5 coassociative, i.e. (id ® A) o A = (A ® id) o A; 

(c) € is a counit with respect to A : (£i ® id) o A = (id ® e\) o A = id; 

(d) z/j/ is an invariant integral on H, then v is invariant with respect to A ; 

(u ® id) o A(A) = (id ® i/) o A(A) = • 1; 

(e) £/ie following relation holds: A o 5 = II o (S ® 5) o A. 

PROOF, a) Evidently, A = (id® 7r')A = (?rr ® id)A. On the other hand, (id® 7r r)A = 
A o 7rr, (IT1 ® 7r')A = A o TT'. SO for every G Hi\H/H\ we have A(fc) € Hi\H/Hi ® #. 
Similarly we see that A(A) € H ® H\\H/H\. b) Both sides of needed equality coincide 
with (7rr ® id ® 7r')(A ® id)A. c) (e ® id)A = (e ® 7r')A = TT', SO that e is right 
counit. Similarly one can see that it is also left counit. d) Replacing e by i/, we can 
prove this statement exactly as previous, e) This is implied by the following chain 
of equalities: A o S = (id ® 7r')A O 5 = (id ® ^ ^ ( ^ ® 5)A = (id ® i/a o IT ® id) 
(11 ® td)(id ® II)(5 ® 5 ® S)(A ® id)A = 11(5 ® 5)(id ® i/a o 5i o TT® id)(A ® id)A = 
n ( 5 ® 5 ) A . _ • 

Two Hopf *-algebras H , H are said to be in duality, if they are in duality as Hopf 
algebras and 

C(f) = C(S(f')) v c g H, / e H, 

where the same symbol denotes the involution in H and in H. In what follows, we will 
be considering H,Hx as Hopf *-algebras (see, for example, [25],[32],[34]) with the Hopf 
algebra structure and the involution *, 7r as an epimorphism of Hopf *-algebras, V\ as a 
state on the *-algebra H1. Then Hi\H, H/Hi and H^H/Hi will be unital ^-algebras, 
7r/,7rr, A map the cone of positive elements into the cones of positive elements of the 
corresponding *-algebras. 

Definition 2 A pair of Hopf algebras (resp. *-Hopf algebras) (H,Hi) is called a 
Gel fand pair if the coproduct A is cocommutative. A Gel fand pair is called strict 
if the algebra Hi\H/Hi is commutative. 

2.2. Now let H be *-Hopf algebra associated with a compact quantum group and H is 
its algebraic dual. We know [34] that H can be represented as 

H = 
Of 

da 

i,j=l 

Cua,j, ( 5 ) 

where ufj are matrix elements of da- dimensional unitary corepresentation of H (da < oo 

for all a running in some discrete set Q) and there exists an invariant integral v on 

H, which is a state and such that a-sum in (5) defines an orthogonal decomposition 

in the sense of the inner product given by (f,g) := v(f • g*) after a suitable choice 
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of an orthonormal basis for each representation space. In this case, the comodules 
Hi\H, H/Hi and also Hi\HjHx may be given by 

H1\H = 
a 

da 

1=1 

da 

j = l 

Cua,j; H/H1 = 
a 

da 

i = l 

d'a 

j=1 
C < 7 , 

HAH/HI = 
a 

d'a 

i,j=1 
Cia,j 

where d'a < da for all a. A notion of a Gel'fand pair for compact quantum groups 
was introduced in [19] as a pair (H,Hi) with an epimorphism 7r : H —> H1? such that 
for any irreducible unitary matrix corepresentation of H, the dimension of the space of 
bi-invariant matrix elements is not greater then 1. 

Lemma 1 A pair of compact quantum groups (H,Hi) with an epimorphism 7r : H —> 
Hi is a Gel fand pair in the sense of Definition 2, iff for any irreducible unitary matrix 
corepresentation o /H , the dimension of the space of bi-invariant matrix elements is not 
greater then 1. 

PROOF. Suppose that 2 < dp for some fixed /3 G Q. Set 771 (u£2) := 1, := 0 
otherwise and 7/2(̂ 2,1) := 1, ^{ufj) := 0 otherwise. One can check that 7/1,772 £ 
( # i \ i / / i / i ) * D H\. Direct calculations show that (A(wfi), 771 ® 772) ^ (A(uf>1), 772 ® 771), 
i.e., A is not cocommutative. Conversely, if da = 1 Va G Q, then A is obviously 
co commutative. • 

3 Connections with hypercomplex systems and hy-
pergroups 

3.1. We will use notions of a spatial tensor product for C*-algebras, a unital Hopf 
C*-algebra, a morphism, and a counit for unital Hopf C*-algebras, as well as notions of 
a coaction of a unital Hopf C*-algebra on a unital C*- algebra and finite Haar measure 
on a unital Hopf C*-algebra (see[4],[10],[34]). If H is a unital Hopf C*-algebra, then 
the coproduct defines a structure of a Banach algebra in the conjugate space H* for the 
C*-akebra H: 

Co * LJ := (u ® ^ ) o A, Vu;,a; G H*. 

H has a counit if and only if H* is a unital algebra. 
As in Section 2, we denote Va 6 H,UJ G H*: 

a; * a (id ®u)o A(a), a * u := (u ® id) 0 A(a). 

Let v be finite Haar measure on a unital Hopf C*-algebra H. One can introduce 
by means of GNS-construction a structure of the Hilbert space L<i(H, v) and the corre
sponding representation of A^ of H in this space. For every compact quantum group the 
completion of the initial Hopf *-algebra with respect to the C**-norm | • | = supp ||p(·)||, 
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