Astérisque

ANNE BAUVAL Quantum group and Poisson-deformation of SU(2)

Astérisque, tome 232 (1995), p. 49-65

<http://www.numdam.org/item?id=AST_1995_232_49_0>

© Société mathématique de France, 1995, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Quantum group- and Poissondeformation of SU(2)

Anne Bauval

Introduction

Woronowicz ([W1], [W2]) defined a family (in the set-theoretical sense) of quantum groups $(SU_{\mu}(2))_{\mu \in \mathbb{R}^{\bullet}}$. (For $\mu = 1$, the C^{*}-algebra A_{μ} underlying $SU_{\mu}(2)$ is merely the algebra C(SU(2)) of continuous functions from the classical group SU(2) into C).

"Forgetting" the group structure of SU(2), Sheu ([S1]) used the Weyl calculus to construct a continuous deformation of the Poisson structure of $C^{\infty}(SU(2))$, where the fibres are precisely the C^* -algebras A_{μ} .

Unifying these two points of view, we shall do the following :

- (§1) put Woronowicz's $SU_{\mu}(2)$'s together into a continuous field of quantum groups,
- (§2) construct a deformation of Poisson-SU(2) in the underlying continuous field of C^* -algebras A_{μ} ,
- (§3) prove that such a deformation is unique among deformations fulfilling suitable requirements,
- (§4) prove that Sheu's deformation fulfills these requirements, and compare it in detail with our deformation.

Paragraphs 2, 3 and 4 will be achieved by working, as Sheu did, at the more elementary level of Poisson-deformations of the disc, which is a "slice" of SU(2).

1 Continuous structure on the family of quantum groups $SU_{\mu}(2)$

Definition 1.1 ([W1], [W2]) For any $\mu \in \mathbf{R}$, A_{μ} is the enveloping C^{*}-algebra of the involutive C-algebra \mathcal{A}_{μ} defined by two generators $\alpha_{\mu}, \gamma_{\mu}$ and relations :

$$\begin{array}{rcl} \alpha_{\mu}^{*}\alpha_{\mu} + \gamma_{\mu}^{*}\gamma_{\mu} &=& 1 & (1_{\mu}) \\ \alpha_{\mu}\alpha_{\mu}^{*} + \mu^{2}\gamma_{\mu}^{*}\gamma_{\mu} &=& 1 & (2_{\mu}) \end{array} \qquad \begin{array}{rcl} \gamma_{\mu}^{*}\gamma_{\mu} &=& \gamma_{\mu}\gamma_{\mu}^{*} & (3_{\mu}) \\ \alpha_{\mu}\gamma_{\mu} &=& \mu\gamma_{\mu}\alpha_{\mu} & (4_{\mu}) \\ \alpha_{\mu}\gamma_{\mu}^{*} &=& \mu\gamma_{\mu}^{*}\alpha_{\mu} & (5_{\mu}) \end{array}$$

and if $\mu \neq 0$, the quantum group $SU_{\mu}(2)$ is defined by the unitary matrix

$$\left(egin{array}{cc} lpha_{\mu} & -\mu\gamma_{\mu}^{*} \ \gamma_{\mu} & lpha_{\mu}^{*} \end{array}
ight)$$

In order to endow the family of these $SU_{\mu}(2)$'s with a structure of continuous field of quantum groups ([B1], [B2]), we just have to endow the family $(A_{\mu})_{\mu \in \mathbb{R}^{*}}$ with a structure of continuous field of C^{*} -algebras in such a way that the sections $\mu \mapsto \alpha_{\mu}$, $\mu \mapsto \gamma_{\mu}$ are continuous. (We shall even do a little more : this field will also be defined at $\mu = 0$).

Definition 1.2 A is the universal C^{*}-algebra defined by three generators α, γ, μ and relations :

$$\begin{array}{rcl} \alpha^* \alpha + \gamma^* \gamma &=& 1 & (1) \\ \alpha \alpha^* + \mu^2 \gamma^* \gamma &=& 1 & (2) \\ \mu & commutes with & \alpha, \gamma & (6) \\ -1 & \leq \mu \leq & 1 & (7). \end{array}$$

A is the *-subalgebra generated by α, γ, μ .

The restriction of the parameter μ to [-1;1] is harmless since for $\mu \neq 0$, there is an isomorphism of quantum groups (not only of C^{*}-algebras) between $SU_{\mu}(2)$ and $SU_{1/\mu}(2)$ (sending α_{μ} to $\alpha_{1/\mu}^{*}$ and γ_{μ} to $-\frac{1}{\mu}\gamma_{1/\mu}^{*}$): using this isomorphism it is then easy to extend to **R** the field on [-1;1] which we are going to construct.

Moreover, such a restriction of the parameter is necessary, otherwise the generator μ would not be bounded, hence the involutive algebra defined by these generators and relations would not have a C^* -envelope.

We shall construct a field of C^* -algebras over [-1;1], using the natural morphism from C([-1;1]) into the center of A. (This morphism is given by relations (6) and (7)). By a slight generalization of the Dauns-Hofmann theorem, proved by Dupré and Gilette ([DG], proposition 1.3 and corollary 2.2) and quoted in [Ri], there is a unique upper semi-continuous field related to the $C([-1;1])-C^*$ - algebra A in the following way.

Definition 1.3 ξ is the upper semi-continuous field of C^{*}-algebras on [-1;1] such that :

- the fiber of ξ at x is A/xA (x denotes here both a point in [-1;1] and the ideal of functions in C([-1;1]) vanishing at this point)
- the total space $\sqcup_{x \in [-1;1]} A/xA$ of ξ is endowed with a topology such that the continuous sections of ξ are the sections of the form $x \mapsto a \mod xA$, for any $a \in A$.

Using the universal properties of A and of the A_{μ} 's, one easily proves the following relationship between our field ξ and Woronowicz's family $(A_{\mu})_{\mu \in [-1;1]}$.

Proposition 1.4 For any $\mu \in [-1;1]$, the fiber at μ of the field ξ is naturally isomorphic to the C^{*}-algebra A_{μ} . This family of isomorphisms identifies the two continuous sections of the field ξ associated to $\alpha, \gamma \in A$ with the two sections $\mu \mapsto \alpha_{\mu}, \mu \mapsto \gamma_{\mu}$ of the family $(A_{\mu})_{\mu \in [-1;1]}$.

Before introducing another field ζ with more elementary fibers, and proving the (lower) continuity of both fields ξ and ζ , let us first get rid of the case $\mu \leq 0$: we shall prove that the study of $\xi_{|[-1,0]}$ may be reduced to the study of $\xi_{|[0,1]}$ (and conversely), by a property with "fractal" flavour.

Proposition 1.5 Let $\varepsilon_{i,j}$ $(1 \le i, j \le 2)$ be the canonical generators of $M_2(\mathbb{C})$ and $i_{\mu}: A_{-\mu} \to M_2(\mathbb{C}) \otimes A_{\mu}$ the morphism defined by : $i_{\mu}(\alpha_{-\mu}) = (\varepsilon_{1,2} + \varepsilon_{2,1}) \otimes \alpha_{\mu}, \qquad i_{\mu}(\gamma_{-\mu}) = (\varepsilon_{1,1} - \varepsilon_{2,2}) \otimes \gamma_{\mu}.$

For any $\mu \in \mathbf{R}$, i_{μ} is an embedding.

Proof. Let *D* be the subalgebra of $M_2(\mathbf{C}) \otimes M_2(\mathbf{C})$ generated by the two elements $P = \varepsilon_{1,1} \otimes \varepsilon_{1,1} + \varepsilon_{2,2} \otimes \varepsilon_{2,2}$ and $Q = \varepsilon_{1,2} \otimes \varepsilon_{1,2} + \varepsilon_{2,1} \otimes \varepsilon_{2,1}$ and similarly, *D'* the subalgebra generated by $P' = \varepsilon_{1,1} \otimes \varepsilon_{2,2} + \varepsilon_{2,2} \otimes \varepsilon_{1,1}$ and $Q' = \varepsilon_{1,2} \otimes \varepsilon_{2,1} + \varepsilon_{2,1} \otimes \varepsilon_{1,2}$. Let $\varphi : D \to \mathbf{C}$ be the morphism such that $\varphi(P) = \varphi(Q) = 1$. One easily checks that the image of $j = (\operatorname{id}_{M_2(\mathbf{C})} \otimes i_{-\mu}) \circ i_{\mu}$ is included in $(D \oplus D') \otimes A_{-\mu}$ and that $((\varphi \oplus 0) \otimes \operatorname{id}_{A_{-\mu}}) \circ j = \operatorname{id}_{A_{-\mu}}$.

We shall now reduce the study of the A_{μ} 's (quantum SU(2)) to the study of more elementary C^* -algebras B_{μ} (quantum disc). Let us recall the two results which naturally led us to this reduction.

Theorem 1.6 ([W2] appendix 2) A_{μ} is isomorphic to A_0 , for any $\mu \in]-1, 1[$.

The isomorphism $T_{\mu}: A_{\mu} \xrightarrow{\sim} A_0$ was defined by Woronowicz as follows :

$$\begin{array}{lll} T_{\mu}(\alpha_{\mu}) &=& \sum_{n=0}^{\infty} \frac{(1-\mu^{2})\mu^{2n}}{\sqrt{1-\mu^{2n+2}} + \sqrt{1-\mu^{2n}}} \alpha_{0}^{*n} \alpha_{0}^{n+1} \\ \text{and} & T_{\mu}(\gamma_{\mu}) &=& \sum_{n=0}^{\infty} \mu^{n} \alpha_{0}^{*n} \gamma_{0} \alpha_{0}^{n} \end{array}$$

Theorem 1.7 ([S1] proposition 1.1) Let

$$0 \longrightarrow C(D) \longrightarrow C(\overline{D}) \xrightarrow{\sigma_1} C(\mathbf{T}) \longrightarrow 0$$

be the exact sequence of the unit disc and

$$0 \longrightarrow \mathcal{K} \longrightarrow C^*(\mathcal{S}) \xrightarrow{\sigma_0} C(\mathbf{T}) \longrightarrow 0$$

be the Taplitz exact sequence. Set $B_1 = C(\overline{D})$ and $B_0 = C^*(S)$. For $\mu = 1$ or 0, A_{μ} is isomorphic to the algebra of continuous functions $f : \mathbf{T} \to B_{\mu}$ such that $\sigma_{\mu}(f(u))$ does not depend on $u \in \mathbf{T}$.

For $\mu = 1$, the isomorphism consists in identifying SU(2) with a family of discs $(D_u)_{u \in \mathbf{T}}$, glued together along their boundary circle :

$$(u, Z) \in \mathbf{T} \times \overline{D}$$
 is identified to $\begin{pmatrix} Z & -\overline{u}c \\ uc & \overline{Z} \end{pmatrix}$, with $c = \sqrt{1 - |Z|^2}$.

(This "slicing" of SU(2) is compatible with the Poisson structure, cf §3 and 4).

For $\mu = 0$, let us recall the Toeplitz exact sequence. $C^*(S)$ is the C^* -algebra generated by the unilateral shift operator S. SS^* is equal to 1 - p, p being a rank one projection. The closed ideal of $C^*(S)$ generated by p is the algebra \mathcal{K} of compact operators, and $C^*(S)/\mathcal{K}$ is isomorphic to $C(\mathbf{T})$, the isomorphism sending the unitary generator $(S \mod \mathcal{K}) \in C^*(S)/\mathcal{K}$ to $\mathrm{id}_{\mathbf{T}}$.

In both cases
$$\mu = 1$$
 or 0, the embedding $A_{\mu} \to C(\mathbf{T}, B_{\mu})$ sends
 α_{μ} to $(u \mapsto \overline{\alpha}_{\mu})$ and γ_{μ} to $(u \mapsto u\overline{\gamma}_{\mu})$, with

$$\overline{\alpha}_{1} = (Z \mapsto Z), \quad \overline{\gamma}_{1} = (Z \mapsto \sqrt{1 - |Z|^{2}})$$

$$\overline{\alpha}_{0} = S^{*}, \qquad \overline{\gamma}_{0} = p.$$

Using the proof of theorem 1.6, one gets the following "generalization" of theorem 1.7 for free (we pass from the case $\mu = 0$ to the "more general" case $|\mu| < 1$ by a rather silly renaming; the only nontrivial assertion of the following corollary is the first one, which justifies this renaming).

Corollary 1.8 For $|\mu| < 1$, let us denote by

- $\overline{\alpha}_{\mu}, \overline{\gamma}_{\mu}$ the elements of $C^{*}(S)$ defined as series in $\overline{\alpha}_{0}, \overline{\gamma}_{0}$ by the same formulas as in theorem 1.6, where $T_{\mu}(\alpha_{\mu}), T_{\mu}(\gamma_{\mu})$ were defined as series in α_{0}, γ_{0}
- \mathcal{B}_{μ} the involutive subalgebra generated by $\overline{\alpha}_{\mu}, \overline{\gamma}_{\mu}$ and
- B_{μ} its closure in $C^*(\mathcal{S})$.

For $|\mu| < 1$, B_{μ} is equal to $C^*(S)$ and the closed ideal of B_{μ} generated by $\overline{\gamma}_{\mu}$ is \mathcal{K} . Moreover, for $-1 < \mu \leq 1$, there is a morphism $\sigma_{\mu} : B_{\mu} \to C(\mathbf{T})$ such that $\sigma_{\mu}(\overline{\alpha}_{\mu}^*) = \mathrm{id}_{\mathbf{T}}$ and such that the sequence

$$0 \longrightarrow \mathcal{K} \longrightarrow B_{\mu} \xrightarrow{\sigma_{\mu}} C(\mathbf{T}) \longrightarrow 0$$

is exact, and A_{μ} is isomorphic to the algebra of continuous functions $f: \mathbf{T} \to B_{\mu}$ such that $\sigma_{\mu}(f(u))$ does not depend on $u \in \mathbf{T}$.

Remark. For $\mu = 1$, the morphism $\sigma_1 : C(\overline{D}) \to C(\mathbf{T})$ which we are choosing is not the mere restriction but (in order to make the notations fit together) $\sigma_1(f)(v) = f(\overline{v})$. This remark will be important in lemma 4.5.

Since $\overline{\gamma}_0 = p \ge 0$, the definition of $\overline{\gamma}_{\mu}$ as a series makes it self adjoint. If $\mu \ge 0$ we even get : $\overline{\gamma}_{\mu} \ge 0$, hence (under the identification of A_{μ} given above) $|\gamma_{\mu}| = |(u \mapsto u\overline{\gamma}_{\mu})| = (u \mapsto \overline{\gamma}_{\mu})$. Using this fact and the universal property of A_{μ} , one easily proves the following proposition.

Proposition 1.9 For $0 \le \mu \le 1$, B_{μ} is isomorphic to the universal C^{*}-algebra defined by generators $\overline{\alpha}_{\mu}, \overline{\gamma}_{\mu}$ and relations :

- the relations (1_{μ}) - (5_{μ}) (cf definition 1.1)
- the additional relation : $\overline{\gamma}_{\mu} \geq 0$.

Remark. Instead of adding a relation and looking at B_{μ} as a quotient of A_{μ} , one may also prove (but this will not be used) that B_{μ} is isomorphic to the C*-subalgebra of A_{μ} generated by α_{μ} , and characterize B_{μ} as the universal C*-algebra defined by one generator α_{μ} and one relation (deduced from relations (1_{μ}) and (2_{μ}) by eliminating γ_{μ}) ([NN]).

Paraphrasing definitions 1.2 and 1.3 and proposition 1.4, we can now define the field of B_{μ} 's.