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Quantum group- and Poisson-
déformation of SU(2) 

A n n e Bauval 

Introduction 

Woronowicz ([Wl], [W2]) defined a family (in the set-theoretical sense) of quantum 
groups (5(7^(2))^^. (For /z = 1, the C*-algebra Aµ underlying 5(7M(2) is merely the 
algebra (7(5(7(2)) of continuous functions from the classical group SU(2) into C). 

"Forgetting" the group structure of .5(7(2), Sheu ([SI]) used the Weyl calculus to 
construct a continuous deformation of the Poisson structure of C°°(5(7(2)), where the 
fibres are precisely the C*-algebras A^. 

Unifying these two points of view, we shall do the following : 
(§1) put Woronowicz's 5(7At(2)'s together into a continuous field of quantum groups, 

(§2) construct a deformation of Poisson-5(7(2) in the underlying continuous field of 
C*-algebras A^, 

(§3) prove that such a deformation is unique among deformations fulfilling suitable 
requirements, 

(§4) prove that Sheu's deformation fulfills these requirements, and compare it in detail 
with our deformation. 

Paragraphs 2, 3 and 4 will be achieved by working, as Sheu did, at the more ele­
mentary level of Poisson-deformations of the disc, which is a "slice" of 5(7(2). 

1 Continuous structure on the family of quantum 
groups 577^(2) 

Definition 1.1 ([Wl], [W2]) For any fi 6 R, A^ is the enveloping C*-algebra of the 
involutive C-algebra defined by two generators aM,7^ and relations : 

<<*μ+Ί*αΊμ = 1 (ΐμ) 
« X + ^TUTM = 1 (2M) 

7:7M = full (3J 
otalu = n»<*» (4 J 
<*»il = nl<*» (5„) 

and if fi ^ 0, the quantum group SU^(2) is defined by the unitary matrix 

G2 

7M 
-wl 
V^w 
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A. BAUVAL 

In order to endow the family of these 5V (̂2)''s with a structure of continuous field 
of quantum groups ([Bl], [B2]), we just have to endow the family ( A ^ ^ R . with a 
structure of continuous field of C*-algebras in such a way that the sections / i H ^ , 
V 7,i are continuous. (We shall even do a little more : this field will also be defined 
at n = 0). 

Definition 1.2 A is the universal C*-algebra defined by three generators a,i,fJ, and 
relations : 

a*a + 7*7 = 1 (1) 
aa* + /z27*7 = 1 (2) 

7*7 = 77* (3) 
cry = fija (4) 

«7* = /i7*a (5) 

fx commutes with a, 7 (6) 
-1 < /*< 1 (7). 

A is the *-subalgebra generated by a^^fi. 

The restriction of the parameter fi to [— 1; 1] is harmless since for fi ^ 0, there 
is an isomorphism of quantum groups (not only of C*-algebras) between 5(7^(2) and 
SUi/^(2) (sending aµ to cti/^ and 7^ to —^71/^*) : using this isomorphism it is then 
easy to extend to R the field on [—1; 1] which we are going to construct. 

Moreover, such a restriction of the parameter is necessary, otherwise the generator 
/i would not be bounded, hence the involutive algebra defined by these generators and 
relations would not have a C*-envelope. 

We shall construct a field of C*-algebras over [—1; 1], using the natural morphism 
from C([—1; 1]) into the center of A. (This morphism is given by relations (6) and (7)). 
By a slight generalization of the Dauns-Hofmann theorem, proved by Dupre and Gilette 
([DG], proposition 1.3 and corollary 2.2) and quoted in [Ri], there is a unique upper 
semi-continuous field related to the C([—1; 1])-C*- algebra A in the following way. 

Definition 1.3 £ is the upper semi-continuous field of C*-algebras on [—1; 1] such that: 

• the fiber of £ at x is A/xA (x denotes here both a point in [—1; 1] and the ideal of 
functions in C([—1; 1]) vanishing at this point) 

• the total space UX£[-i;i]A/xA of £ is endowed with a topology such that the con­
tinuous sections of £ are the sections of the form x H-> a mod xA, for any a € A. 

Using the universal properties of A and of the A^'s, one easily proves the following 
relationship between our field £ and Woronowicz's family ( A M ) M 6 [ _ 1 ; 1 ] . 

Proposition 1.4 For any // € [—1; 1], the fiber at \i of the field £ is naturally isomor­
phic to the C*-algebra A^. This family of isomorphisms identifies the two continuous 
sections of the field £ associated to a, 7 G A with the two sections \i »—• ct^fi 1—• 7^ of 
the family (A^^^i]. 

Before introducing another field ( with more elementary fibers, and proving the 
(lower) continuity of both fields £ and £, let us first get rid of the case /z < 0 : we shall 
prove that the study of £|[-i,o] may be reduced to the study of £|[0;i] (and conversely), 
by a property with "fractal" flavour. 
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Proposition 1.5 Let €ij (1 < i,j < 2) be the canonical generators of M2(C) and 
ia : —• M 2(C) <8> A„ the morphism defined by : 

zM(a_M) = (eli2 + e2,i) ® *'μ(7-μ) = (¿M - ε2α) ® 7μ· 
For any // G R, iM an embedding. 

Proof. Let J5 be the subalgebra of M 2(C) ® M 2(C) generated by the two elements 
^ = ® £1,1 + £2,2 ® £2,2 and Q = £i,2 ® 1̂,2 + £2,1 ® £2,1 and similarly, £)' the 
subalgebra generated by P' — 6\y\ ® £2,2 + £2,2 ® £1,1 and Q' = £i,2 (8) e2>i + £2,i <g> £i>2. 
Let Y : D -> C be the morphism such that ^p(P) = <p{Q) = 1. One easily checks 
that the image of j = (idM2(C) ® 0 *n is included in (D © D') ® A.^ and that 
((y>0O)®icU_M)o t; = i<U_M. 

We shall now reduce the study of the Aµ's (quantum 5(7(2)) to the study of more 
elementary C*-algebras Bµ (quantum disc). Let us recall the two results which naturally 
led us to this reduction. 

Theorem 1.6 ([W2] appendix 2) A^ is isomorphic to Aq, for any \i G] — 1,1[. 

The isomorphism TM : AM Aq was defined by Woronowicz as follows : 

TM = EOO 71=0 (1-μ2)μ2η 

V/L-^ 2 N + 2 +\ /L-/i 2 n 
a0 a0 

and TM = EOO µNA0Y0A0 

71=0 
Theorem 1.7 ([SI] proposition 1.1) Let 

0 CID) C(D) ao •C(T) 0 

be the exact sequence of the unit disc and 

0 K C*(S) <?0 C(T) 0 

be the Tceplitz exact sequence. Set B\ = C(D) and B0 = C*(S). For \i — 1 or 0, A^ is 
isomorphic to the algebra of continuous functions f : T —> B^ such that <rM(/(«)) does 
not depend on u G T. 

For fi = 1, the isomorphism consists in identifying SU(2) with a family of discs 
(DJUF:T, glued together along their boundary circle : 

( U , Z ) g T X D is identified to Z 
uc 

—uc 
Z , with c = 1 - I z\\ 

(This "slicing" of SU(2) is compatible with the Poisson structure, cf §3 and 4). 
For fj, = 0, let us recall the Tceplitz exact sequence. C*(S) is the C*-algebra 

generated by the unilateral shift operator S. SS* is equal to 1 — p, p being a rank 
one projection. The closed ideal of C*(S) generated by p is the algebra tC of compact 
operators, and C*(S)/IC is isomorphic to C(T), the isomorphism sending the unitary 
generator (<S mod K) G C*(S)/K to idx-

In both cases fi = 1 or 0, the embedding Au —• C(T,1?„) sends 
aM to (w I—• aM) and 7M to (u ti7 ), with 

ax = (Zi->Z), 7i = 1 - \Z\2) 
a0 = S\ 7o = P-
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Using the proof of theorem 1.6, one gets the following "generalization" of theorem 1.7 
for free (we pass from the case // = 0 to the "more general" case |^| < 1 by a rather 
silly renaming ; the only nontrivial assertion of the following corollary is the first one, 
which justifies this renaming). 

Corollary 1.8 For (µ) < 1, let us denote by 

• a/o7/x the elements of C*(S) defined as series in ao,70 by the same formulas as 
in theorem 1.6, where ^(a^), T (̂7M) were defined as series in a0,7o 

• Z?M the involutive subalgebra generated by aM,7 and 

• B^ its closure in 

For (µ) < 1, Bp is equal to C*(«S) and the closed ideal of generated by 7̂  ¿5 
JC. Moreover, for — 1 < \i < I, there is a morphism cr^ : B^ —> C(T) such that 
cr^a*) = idx and such that the sequence 

0 K в* oµ •C(T) 0 

¿5 exact, and Aµ is isomorphic to the algebra of continuous functions f : T —> B^ such 
that cг/i(/(г¿)) does not depend on u £ T. 

Remark, For /i = 1, the morphism <7i : C(D) —• C(T) which we are choosing is not 
the mere restriction but (in order to make the notations fit together) Ci(f)(v) = f(v). 
This remark will be important in lemma 4.5. 

Since 7 0 = p > 0, the definition of 7̂  as a series makes it self adjoint. If fx > 0 
we even get : 7̂  > 0, hence (under the identification of Aµ given above) I7J = 
|(u K-> 1x7̂ ) = (u ·—• 7^). Using this fact and the universal property of A^ one easily 
proves the following proposition. 

Proposition 1.9 For 0 < fJ- < 1, B^ is isomorphic to the universal C*-algebra defined 
by generators 0^,7^ and relations : 

the relations (lM)-(5^) (cf definition 1.1) 

the additional relation : 7M > 0. 

Remark. Instead of adding a relation and looking at 2?M as a quotient of A^ one may 
also prove (but this will not be used) that B^ is isomorphic to the C*-subalgebra of 
A^ generated by a ,̂ and characterize B^ as the universal C*-algebra defined by one 
generator aµ and one relation (deduced from relations (1M) and (2^) by eliminating 7̂ ) 
([NN]). 

Paraphrasing definitions 1.2 and 1.3 and proposition 1.4, we can now define the field 
of B^s. 
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