Astérisque

FLORIN P. BOCA

Ergodic actions of compact matrix pseudogroups on C^* -algebras

Astérisque, tome 232 (1995), p. 93-109 <http://www.numdam.org/item?id=AST 1995 232 93 0>

© Société mathématique de France, 1995, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Ergodic Actions of Compact Matrix Pseudogroups on C*-algebras

Florin P. Boca

Dedicated to Professor Masamichi Takesaki on the ocasion of his 60th birthday

Let G be a compact group acting on a unital C^* -algebra \mathcal{M} . The action is said to be ergodic if the fixed point algebra \mathcal{M}^G reduces to scalars. The first breakthrough in the study of such actions was the finiteness theorem of Høegh-Krohn, Landstad and Størmer [HLS]. They proved that the multiplicity of each $\pi \in \hat{G}$ in \mathcal{M} is at most dim (π) and the unique G-invariant state on \mathcal{M} is necessarily a trace. When combined with Landstad's result [L] that finite-dimensionality for the spectral subspaces of actions of compact groups implies that the crossed product is a type $I \ C^*$ -algebra (and in fact, as pointed out in [Wa1] is a direct sum of algebras of compact operators), the finiteness theorem shows that the crossed product of a unital C^* -algebra by an ergodic action of a compact group is necessarily equal to $\oplus_i \mathcal{K}(\mathcal{H}_i)$.

The study of such actions was essentialy pushed forward by Wassermann. He developed an outstanding machinery based on the notion of multiplicity maps, establishing a remarkable connection with the equivariant K-theory. This approach allowed him to prove, among other important things, the strong negative result that SU(2) cannot act ergodically on the hyperfinite II_1 factor [Wa3].

The aim of this note is to study ergodic actions of Woronowicz's compact matrix pseudogroups on unital C^* -algebras, extending some of the previous results. In this insight we prove in §1 the analogue of the finiteness theorem. More precisely, if G =(A, u) is a compact matrix pseudogroup acting ergodically on a unital C^* -algebra by a coaction $\sigma : \mathcal{M} \to \mathcal{M} \otimes A$ such that $\sigma(\mathcal{M})(1_{\mathcal{M}} \otimes A)$ is dense in $\mathcal{M} \otimes A$, then there is a decomposition of the *-algebra of σ -finite elements into isotypic subspaces $\mathcal{M}_0 = \bigoplus_{\alpha \in \widehat{G}} \mathcal{M}_{\alpha}$, orthogonal with respect to the scalar product induced on \mathcal{M} by the unique σ -invariant state ω . Moreover, the spectral subspaces \mathcal{M}_{α} are finite dimensional and dim $(\mathcal{M}_{\alpha}) \leq M_{\alpha}^2$, \mathcal{M}_{α} being the quantum dimension of $\alpha \in \widehat{G}$. If the Haar measure is faithful on A, then \mathcal{M}_0 is dense in the GNS Hilbert space \mathcal{H}_{ω} .

Although ω is not in general a trace, we prove the existence of a multiplicative linear map $\Theta : \mathcal{M}_0 \to \mathcal{M}_0$ such that $\omega(xy) = \omega(\Theta(y)x)$ for all $x \in \mathcal{M}, y \in \mathcal{M}_0$ and Θ is a scalar multiple of the modular operator F_{α} when restricted to each irreducible σ -invariant subspace of the spectral subspace \mathcal{M}_{α} .

The crossed products by such coactions are studied in §2 where we prove, using the Takesaki-Takai type duality theorem of Baaj and Skandalis [BS], that they are isomorphic all the time to a direct sum of C^* -algebras of compact operators. As a corollary, if a compact matrix pseudogroup with underlying nuclear C^* -algebra acts ergodically on a unital C^* -algebra \mathcal{M} , then \mathcal{M} follows nuclear.

We are grateful to Masamichi Takesaki for discussions on [BS] and [Wor], to Gabriel Nagy for valuable discussions on this paper and related topics and to the referee for his pertinent considerations. Our thanks go to Magnus Landstad for his remarks on a preliminary draft of this paper. After a discussion with him, I realized that the dimension of the spectral subspace of α is bounded by M_{α}^2 , improving a previous rougher estimation.

§1. The isotypic decomposition and finiteness of multiplicities for ergodic actions

We start with a couple of definitions.

Definition 1 ([BS]) A coaction of a unital Hopf C^* -algebra (A, Δ_A) on a unital C^* algebra \mathcal{M} is a unital one-to-one *-homomorphism $\sigma : \mathcal{M} \to \mathcal{M} \otimes A$ (the tensor product will be all the time the minimal C^* -one) that makes the following diagram commutative

$$\begin{array}{cccc} \mathcal{M} & \stackrel{\sigma}{\longrightarrow} & \mathcal{M} \otimes A \\ \sigma \uparrow & \uparrow & id_{\mathcal{M}} \otimes \Delta_A \\ \mathcal{M} \otimes A & \stackrel{\sigma \otimes id_A}{\longrightarrow} & \mathcal{M} \otimes A \otimes A \end{array}$$

A C^{*}-algebra \mathcal{M} with a coaction σ of (A, Δ_A) is called an A-algebra if σ is one-toone and $\sigma(\mathcal{M})(1_{\mathcal{M}} \otimes A)$ is dense in $\mathcal{M} \otimes A$.

Definition 2 The fixed points of the coaction $\sigma : \mathcal{M} \to \mathcal{M} \otimes A$ are the elements of $\mathcal{M}^{\sigma} = \{x \in \mathcal{M} \mid \sigma(x) = x \otimes 1_A\}$. The coaction σ is called ergodic if $\mathcal{M}^{\sigma} = \mathbb{C}1_{\mathcal{M}}$.

We denote by \mathcal{M}^* the set of continuous linear functionals on \mathcal{M} .

Definition 3 $\phi \in \mathcal{M}^*$ is called σ -invariant if $(\phi \otimes \psi)(\sigma(x)) = (\phi \otimes \psi)(x \otimes 1_A) = \psi(1_A)\phi(x)$ for all $\psi \in A^*$.

Let G = (A, u) be a compact matrix pseudogroup group with comultiplication $\Delta_A : A \to A \otimes A$, smooth structure \mathcal{A} and coinverse $\kappa : \mathcal{A} \to \mathcal{A}$ (cf [Wor]). Then A^* is an algebra with respect to the convolution $\phi * \psi = (\phi \otimes \psi) \Delta_A$, $\phi, \psi \in A^*$ and there exists a unique state h on A, called the Haar measure of G, so that $\phi * h = h * \phi = \phi(1_A)h$ for all $\phi \in A^*$. Let \mathcal{M} be a unital C^* -algebra which is an A-algebra via the coaction $\sigma : \mathcal{M} \to \mathcal{M} \otimes A$ and consider $\theta = (id_{\mathcal{M}} \otimes h)\sigma$. **Lemma 4** i) $\theta(x) \in \mathcal{M}^{\sigma}$ for all $x \in \mathcal{M}$. Moreover θ is a conditional expectation from \mathcal{M} onto \mathcal{M}^{σ} .

ii) If σ is ergodic, then $\theta(x) = \omega(x) \mathbf{1}_{\mathcal{M}}$ and ω is the only σ -invariant state on \mathcal{M} .

Proof. i) Note that

$$\begin{aligned} \sigma(\theta(x)) &= \sigma((id_{\mathcal{M}} \otimes h)(\sigma(x)) = (\sigma \otimes h)(\sigma(x)) \\ &= (id_{\mathcal{M}} \otimes id_A \otimes h)(\sigma \otimes id_A)(\sigma(x)) \\ &= (id_{\mathcal{M}} \otimes id_A \otimes h)(id_{\mathcal{M}} \otimes \Delta_A)(\sigma(x)) \\ &= (id_{\mathcal{M}} \otimes (id_A \otimes h)\Delta_A)(\sigma(x)), \qquad x \in \mathcal{M}. \end{aligned}$$

Since $(id_A \otimes h)(\Delta_A(a)) = h * a = h(a)1_A$, $a \in A$ ([Wor, 4.2]), we obtain further :

$$\begin{aligned} (\psi_1 \otimes \psi_2)((id_{\mathcal{M}} \otimes (id_A \otimes h)\Delta_A)(y \otimes a)) \\ &= (\psi_1 \otimes \psi_2)(y \otimes (id_A \otimes h)(\Delta_A(a))) \\ &= (\psi_1 \otimes \psi_2)(y \otimes h(a)1_A) = \psi_1(y)\psi_2(1_A)h(a) \\ &= (\psi_1 \otimes \psi_2)((id_{\mathcal{M}} \otimes h)(y \otimes a) \otimes 1_A), \end{aligned}$$

for all $y \in \mathcal{M}, a \in A, \psi_1 \in \mathcal{M}^*, \psi_2 \in A^*$. Therefore for $x \in \mathcal{M}, \psi_1 \in \mathcal{M}^*, \psi_2 \in A^*$ we have :

$$(\psi_1 \otimes \psi_2)(\sigma(\theta(x)) = (\psi_1 \otimes \psi_2)((id_{\mathcal{M}} \otimes h)\sigma(x) \otimes 1_A) = (\psi_1 \otimes \psi_2)(\theta(x) \otimes 1_A)$$

and consequently $\sigma(\theta(x)) = \theta(x) \otimes 1_A$ for all $x \in \mathcal{M}$. θ is a norm one projection since

$$heta(x)=(id_{\mathcal{M}}\otimes h)(\sigma(x))=(id_{\mathcal{M}}\otimes h)(x\otimes 1)=x,\qquad x\in \mathcal{M}^{\sigma}.$$

ii) Let $\psi \in A^*$. Then we get for all $x \in \mathcal{M}$:

$$\begin{aligned} (\omega \otimes \psi)(\sigma(x)) &= ((id_{\mathcal{M}} \otimes h)\sigma \otimes \psi)(\sigma(x)) \\ &= (id_{\mathcal{M}} \otimes \psi)((id_{\mathcal{M}} \otimes h)\sigma \otimes id_{\mathcal{A}})(\sigma(x)) \\ &= (id_{\mathcal{M}} \otimes \psi)(id_{\mathcal{M}} \otimes h \otimes id_{\mathcal{A}})((\sigma \otimes id_{\mathcal{A}})\sigma(x)) \\ &= (id_{\mathcal{M}} \otimes \psi)(id_{\mathcal{M}} \otimes h \otimes id_{\mathcal{A}})((id_{\mathcal{M}} \otimes \Delta_{\mathcal{A}})\sigma(x)) \\ &= (id_{\mathcal{M}} \otimes \psi)(id_{\mathcal{M}} \otimes (h \otimes id_{\mathcal{A}})\Delta_{\mathcal{A}})(\sigma(x)) \\ &= \psi(1_{\mathcal{A}})(id_{\mathcal{M}} \otimes h)(\sigma(x)) = \psi(1_{\mathcal{A}})\omega(x), \end{aligned}$$

therefore ω is a σ -invariant state on \mathcal{M} . Finally, assume that ϕ is a σ -invariant state on \mathcal{M} . Then for all $x \in \mathcal{M}$:

$$\phi(x) = (\phi \otimes h)(\sigma(x)) = \phi((id_{\mathcal{M}} \otimes h)(\sigma(x))) = \phi(\theta(x)) = \phi(\omega(x)1_{\mathcal{M}}) = \omega(x). \quad \Box$$

Remarks. 1). The proof of the previous statement doesn't use the faithfulness of σ but only the equality $(\sigma \otimes id_A)\sigma = (id_{\mathcal{M}} \otimes \Delta_A)\sigma$.

2). Since the tensor product of two faithful completely positive maps is still faithful [T], it follows that if σ is one-to-one and h is faithful on A, then ω is a faithful state on \mathcal{M} .

3). Although one can easily pass from a compact matrix pseudogroup to the reduced one, which has faithful Haar measure, as indicated at page 656 in [Wor], it turns out that the Haar measure is faithful in several important examples (e.g. on commutative CMP, on reduced cocommutative CMP or, cf. [N], on $SU_{\mu}(N)$).

Denote by \mathcal{H}_{ω} the completion of \mathcal{M} with respect to the inner product $\langle x, y \rangle_2 = \omega(y^*x)$ and let \mathcal{M} acting on \mathcal{H}_{ω} in the GNS representation. Consider the C^* -Hilbert module $\mathcal{H}_{\omega} \otimes A$ with the A-valued inner product $\langle x_{\omega} \otimes a, y_{\omega} \otimes b \rangle_A = \omega(y^*x)b^*a$, for $x, y \in \mathcal{M}, a, b \in A$, which can be viewed as $\mathcal{M} \otimes A$ in the Stinespring representation of the completely positive map $\omega \otimes id_A$. Define also $V : \mathcal{H}_{\omega} \otimes A \to \mathcal{H}_{\omega} \otimes A$ by :

$$V(\sum_{i}(x_i)_{\omega}\otimes a_i)=\sum_{i}\sigma(x_i)(1_{\omega}\otimes a_i), \quad x_i\in\mathcal{M}, a_i\in A$$

Lemma 5 V is a unitary in $\mathcal{L}(\mathcal{H}_{\omega} \otimes A) = M(\mathcal{K}(\mathcal{H}_{\omega}) \otimes A)$ (the multipliers of the C*-algebra $\mathcal{K}(\mathcal{H}_{\omega}) \otimes A$) and $\sigma(x) = V(x \otimes 1_A)V^*$, $x \in \mathcal{M}$.

Proof. For any $\phi \in A^*, a, b \in A$, denote by $\phi(a \cdot b) \in A^*$ the linear functional $\phi(a \cdot b)(x) = \phi(axb), x \in A$. The σ -invariance of ω yields :

$$\begin{aligned} \phi((\omega \otimes id_A)((1_{\mathcal{M}} \otimes b^*)\sigma(x)(1_{\mathcal{M}} \otimes a)) &= (\omega \otimes \phi(b^* \cdot a))(\sigma(x)) \\ &= \phi(b^* \cdot a)(1_A)\omega(x) = \phi(b^*a)\omega(x), \quad x \in \mathcal{M}, a, b \in A, \phi \in A^*, \end{aligned}$$

therefore we have for all $a, b \in A, x, y \in \mathcal{M}$:

$$\begin{array}{l} \langle V(x_{\omega}\otimes a), V(y_{\omega}\otimes b)\rangle_{A} = \langle \sigma(x)(1_{\omega}\otimes a), \sigma(y)(1_{\omega}\otimes b)\rangle_{A} \\ = (\omega\otimes id_{A})((1_{\mathcal{M}}\otimes b^{*})\sigma(y^{*}x)(1_{\mathcal{M}}\otimes a)) = \omega(y^{*}x)b^{*}a = \langle x_{\omega}\otimes a, y_{\omega}\otimes b\rangle_{A} \end{array}$$

and V follows isometry on $\mathcal{H}_{\omega} \otimes A$. Furthermore V is unitary since $\sigma(\mathcal{M})(1_{\mathcal{M}} \otimes A)$ is dense in $\mathcal{M} \otimes A$ and the relation $V(x \otimes 1_A) = \sigma(x)V, x \in \mathcal{M}$, is obvious. \Box

Definition 6 ([BS]) A corepresentation of the Hopf C^* -algebra (A, Δ_A) is a unitary $V \in \mathcal{L}(\mathcal{H}_V \otimes A) = M(\mathcal{K}(\mathcal{H}_V) \otimes A)$ such that

$$V_{12}V_{13} = (id_{\mathcal{L}(\mathcal{H}_V)} \otimes \Delta_A)(V).$$

All the corepresentations throughout this paper will be unitary unless specified otherwise. Note that in the case when $\dim \mathcal{H}_V < \infty V$ is called in [Wor] a (finite dimensional) representation of the quantum matrix pseudogroup G = (A, u). Thus the representations of the quantum matrix pseudogroup G = (A, u) are the corepresentations of (A, Δ_A) and we will call them simply the corepresentations of A.

Lemma 7 The unitary V from Lemma 5 is a corepresentation of A.